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Abstract

These are the notes for the first quarter course in Quantum Field Theory (QFT) at UC

Santa Cruz. Following [1], it focuses exclusively on scalar fields, introduces path integrals

almost immediately, and uses the mostly plus metric convention.
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What is quantum field theory?

We don’t know. There is no mathematically precise definition of quantum field theory in

general. If you’re a mathematician, this subject will drive you up the wall. At the physicist’s

level of rigor, the best logical construction of quantum field theory in my opinion is done by

Steven Weinberg, in his book The Quantum Theory of Fields Vol. 1 [2]. But it is somewhat

impenetrable on a first read, so I would not suggest starting there.

Let’s discuss, colloquially, what quantum field theory (QFT) is. QFT is a general frame-

work for the quantization of classical field theory. High energy physicists often care about it

in the context where there is also Lorentz invariance, since they are interested in the funda-

mental theories that govern our universe, which are Lorentz invariant as far as we can tell.

Condensed matter physicists also use this framework, but are happy to leave out Lorentz

invariance since it is not useful in many situations at low energies. So, while QFT solves

the problem of unifying quantum mechanics and special relativity, as you may have heard,

it is actually even more powerful than this. It can treat all sorts of non-relativistic cases of

physical interest, e.g. the inflationary phase of our universe or tabletop experiments. We

will, however, focus exclusively on the Lorentz-invariant case.
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One of the surprising things that happens in a quantum field theory class – it definitely

confused me for years – is what in the world happened to quantum mechanics, which I

thought I knew well. We are taught quantum mechanics as computing eigenvectors and

eigenvalues. Wavefunctions are everywhere. But if you open most QFT textbooks, spotting

the wavefunction is about as difficult as finding Waldo. This is partly because the goal of

many of these textbooks is to compute perturbative processes in the Standard Model of

particle physics. Then the relevant object is a sort of overlap of eigenvectors that in the end

produces some probability amplitudes. But the wavefunction, like Waldo, is there, hiding, all

the time. It is good to remember this and ground yourself in ordinary quantum mechanics

if you feel yourself getting lost.

Things you’ll need to know

One of the difficult parts about learning quantum field theory is the large background you will

need and new physical ideas that you will have to understand. If you don’t have familiarity

with the old stuff, and if you can’t identify the new physical ideas as they appear, then you

are at risk of losing the forest for the trees. When I learned the subject, I couldn’t tell what

was new, what was old, what I should have already known, etc., so it was a struggle for me.

So hopefully this list will help a bit in organizing the course topics in your head.

Here is some of the background that will make your life easier if you review:

1. Complex analysis: residue theorem etc.

2. Green’s function solution of differential equations

3. Classical field theory and variational calculus

4. Index notation and Einstein summation convention from relativity

Some of the new ideas that will come your way include the following:

1. Ultraviolet divergences

2. Infrared divergences

3. Representation theory, in particular representations of the Lorentz group; this is to

deal with non-scalar particles like electrons and photons.

4. Path integrals

5. Gauge invariance and gauge theory

3



The first two topics have to do with the infinities that plague QFT, which you may have

heard of. They are very confusing and dealing with them feels often feels ad hoc. We will

try to handle them carefully and isolate their appearance.

Conventions

Here is a list of some of the conventions and formulas used in these notes:

� ηµν = diag(−1, 1, 1, 1), i.e. we use the “mostly plus” metric which [1] and [2] use (and

most others do not).

� Latin indices i, j etc. run over spatial coordinates while Greek indices µ, ν etc. run

over space and time.

� 4 ..= ∇2 ..= δij∂i∂j = ∂2x + ∂2y + ∂2z

� � ..= ∂2 ..= ηµν∂µ∂ν = −∂2t + ∂2x + ∂2y + ∂2z

� Sometimes ∂2x will be used to mean �x when acting on a function of two spacetime

positions G(x, y). In this context ∂2x is simply the d’Alembertian �x acting on the first

argument.

� In non-relativistic quantum mechanics we have (with ~ = 1)

[x, p] = i , 〈x|x′〉 = δ(x− x′) , 〈p|p′〉 = δ(p− p′) , 〈x|p〉 =
eipx√

2π
,

1 =

∫
dp|p〉〈p| =

∫
dx|x〉〈x| ,

δ(x− x′) = 〈x|x′〉 =

∫
dp〈x|p〉〈p|x′〉 =

∫ ∞
−∞

dp

2π
eip(x−x

′) , 1 =

∫ ∞
−∞

dx δ(x− x′)

Heisenberg picture: O(t) = eiHtO(0)e−iHt , Schrödinger picture: |ψ(t)〉 = e−iHt|ψ(0)〉

=⇒ 〈ψ|O(t)|ψ〉Heisenberg = 〈ψ(t)|O|ψ(t)〉Schrödinger
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Why these notes?

These notes are a blend of many textbooks and people that I learned the subject from. Many

of today’s standard textbooks are aimed toward computing processes in the Standard Model

of particle physics as quickly as possible. While this is important for many reasons – diving

into research on particle phenomenology one of them – it is not the optimal path for learning

the subject. And indeed, condensed matter physicists use QFT all the time and are less

interested in this perspective.

One of the problems with the usual approach is that there are too many novel things

appearing all at once. Confronting the Standard Model forces you to immediately deal with

the representation theory of the Lorentz group, fermions, and massless gauge fields and

their ensuing infrared divergences. This comes on top of one of the deepest aspects of QFT –

ultraviolet divergences and renormalization – and it is very easy to get lost. The fact that the

general mathematical machinery of QFT, including dealing with ultraviolet divergences and

renormalization, can be studied simply in scalar field theory is an opportunity few textbooks

take advantage of.

Another problem with the usual approach – although this is more controversial – is the

postponing of path integral methods until very late in the course. This seems to be simply

anachronistic. It is both the quickest way to calculating Feynman diagrams and a powerful

tool for many modern applications of QFT.

On both these counts, the textbook by Srednicki [1] is wonderful, since it focuses on

scalar fields and the path integral from the start. Many students, however, have felt that the

pedagogy in Srednicki is a bit minimalistic. This is where the textbooks by Coleman [3] and

Schwartz [4] shine, although the former is somewhat out of date by today.

It seems to me that the ideal modern textbook would have the topics mostly ordered

according to Srednicki but with the pedagogy of Coleman and Schwartz. This is what I have

tried to do in these notes. Of course, everyone’s perspective on this is different, and I have

surely missed the mark in many places. There are some common stumbling blocks in QFT

which I tried to disambiguate by the following

� Several appendices are included which cover background that students need but are

often missing, e.g. retarded vs advanced Green’s functions and how they relate to the

chosen boundary conditions.

� Feynman diagrams are introduced both in the context of classical differential equations

and ordinary one-dimensional integrals to demystify them.

� The LSZ formula is punted as far back as possible, since the subject of QFT is much
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more than calculating scattering amplitudes.

� The wavefunction makes an appearance in a few places so that the connection to

quantum mechanics is a little clearer.

� Functions and functionals are carefully disambiguated from the start.

After a first course, to understand the subject much more deeply, I recommend to everyone

that they tackle Weinberg’s brilliant textbook [2]. I have never met someone who has done

well with this book on a first read. But it is the closest any book has come to a logical

construction of the subject (for a physicist), very carefully building it from the ground up

with basic physical principles. This book was definitely a revelation for me.
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1 Historical progression

The route to QFT was a mess. Given your coursework, you might expect that first quantum

mechanics and special relativity were developed, and then some people thought really hard

and figured out how to unify them. Instead, the history of QFT is very tied into the history

of quantum mechanics itself. After all, physicists were trying to understand things like

photons, fermions, etc., not so much particles in a box with infinite potential walls. So the

two subjects actually developed more in lockstep. Chapter 1 of [2] gives a nice history of the

subject; we will not review it here. Like Weinberg, I believe that the historical route can

cloud the logical route (and especially does so in the case of this subject). Sections 1.1 - 1.3

of [4] give a select historical progression to motivate QFT, starting from blackbody radiation

and the ultraviolet catastrophe. That is another place you can look.
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2 Attempts at relativistic quantum mechanics

As discussed in the introduction, QFT can be thought of as the quantization of classical

fields. Lorentz invariance is not necessary. But in this course we will exclusively focus on

Lorentz invariant theories. Then it is natural to ask: why are we forced into introducing the

notion of fields when trying to unify quantum mechanics and special relativity? The best

treatment of this is in Chapters 2 - 5 of [2]. This is around 160 pages of material before fields

are introduced, so we will instead content ourselves with some motivation and then jump

straight into the fields.

So let’s try a naive attempt at relativistic quantum mechanics. We take the fundamental

equation in quantum mechanics, the Schrödinger equation:

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (2.1)

Hats ˆ represent a quantum operator. As you know in quantum mechanics, the physics of

the system you care about is all encoded in the Hamiltonian operator Ĥ, whose expectation

value gives the total energy. A free particle with mass m has the Hamiltonian

H =
p̂2

2m
(2.2)

where p̂i represents the 3-momentum of the particle and p̂2 = p̂ip̂
i. To write the wavefunction

in the position basis, we take the overlap of the ket wavefunction with a position eigenvector

bra:

ψ(xi, t) ≡ 〈xi|ψ(t)〉 . (2.3)

Using the position basis representation of the momentum operator, i.e.

p̂i = −
∫
dxi|xi〉i~∇i〈xi| , (2.4)

gives

〈xi|i~
∂

∂t
|ψ〉 = 〈xi|

p̂2i
2m
|ψ〉 =⇒ i~

∂

∂t
ψ(xi, t) = − ~2

2m
∇2ψ(xi, t) . (2.5)

This is a non-relativistic equation, because the Hamiltonian that was used was modeled after
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the kinetic energy E = 1
2mv

2 = p2/(2m). We can instead use the relativistic equation

pµpµ ≡ m2uµuµ = −m2c2 = −E2/c2 + p2 → Ĥ =
√
p̂2c2 +m2c4 (2.6)

Notice that for v � c, i.e. p� mc, we can expand this as

Ĥ = mc2 +
p̂2

2m
− 1

8c2m3
p̂4 + . . . (2.7)

The first term is the famous Einstein rest-energy term, the second term is the nonrelativistic

term we saw before, but then there is an infinite series of higher order terms in p̂2.

In the position basis we have

i~
∂

∂t
ψ(xi, t) =

√
−~2c2∇2 +m2c4 ψ(xi, t) . (2.8)

This attempt has two serious problems. The first is that if we expand the square root as

before we have terms with arbitrarily high powers of ∇2. This usually signals nonlocality of

the theory, since high derivatives of a function can access the value of the function far away,

in the sense of a Taylor series. So this would say the time derivative of the wavefunction at

a point in spacetime is related to the value of the wavefunction arbitrarily far away. That is

nonlocal.

Example 1: We can explicitly calculate the propagator using the square-root Hamiltonian

to see that things can travel faster than light. Let’s warm up with the quantum-mechanical

case, Ĥ = p̂2/(2m). The propagator is

U(t) = 〈x2|e−iĤt|x1〉 . (2.9)

Inserting a complete set of momentum eigenstates gives

U(t) =

∫
d3p 〈x2|e−i

p2

2m
t|p〉〈p|x1〉 =

∫
d3p

(2π)3
e−i

p2t
2m

+ip·(x2−x1) (2.10)

We switch to spherical coordinates, d3p = p2 sin θ dp dθ dφ and align the z axis along x2−x1

so that p · (x2 − x1) = p|x2 − x1| cos θ. Doing the θ and φ integrals gives

U(t) =
1

2π2|x2 − x1|

∫ ∞
0

dp p sin(p|x2 − x1|)e−
ip2t
2m . (2.11)

To evaluate this integral, we can analytically continue t to have a slight negative imaginary
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part t→ t− iε with ε > 0. This provides a Gaussian suppression, and after doing the integral

we can set ε→ 0 to get

U(t) =
( m

2πit

)3/2
eim(x2−x1)2/(2t) . (2.12)

This propagator does not vanish for spacelike separated points, so does not respect Lorentz

invariance.

If we repeat the calculation with Ĥ =
√
p̂2 +m2, the same steps lead to

U(t) =
1

2π2|x2 − x1|

∫ ∞
0

dp p sin(p|x2 − x1|)e−it
√
p2+m2

. (2.13)

This can be evaluated and is again nonzero for spacelike separation. One way to approxi-

mate it is to take a large spacelike separation x ≡ |x2 − x1| � t and evaluate the integral

by stationary phase (see Appendix D.1 for a quick review). Writing the sine as complex ex-

ponentials leads to two integrals, with a stationary point p = imx/
√
x2 − t2 for one integral

and p = −imx/
√
x2 − t2 for the other integral. Plugging this in gives

U(t) ∼ m√
x2 − t2

e−m
√
x2−t2 . (2.14)

We again see a nonzero value for the propagator for spacelike separation.

Another problem with the square-root Hamiltonian is that time and space are not treated

symmetrically in the resulting equation (2.8): we have a single time derivative on the left

and arbitrarily many spatial derivatives on the right.

To solve both problems, let’s square the differential operators on both sides of the equa-

tion. This leads to

−~2 ∂
2

∂t2
ψ(xi, t) =

(
−~2c2∇2 +m2c4

)
ψ(xi, t) . (2.15)

This is known as the Klein-Gordon equation. Notice that for m = 0 it is nothing but the

wave equation, which describes sound waves, water waves, etc. This differential equation is

well-behaved and describes local propagation.

We should be a little more precise about what the symmetry between space and time

means. Really we want the equation to be consistent with special relativity. This means that

the physics should be the same in all inertial reference frames. An inertial reference frame is
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one that does not accelerate. It can be given coordinates xµ = (x0, xi) = (ct, xi) with metric

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 . (2.16)

This means we are using the Minkowski metric ηµν with sign convention (−,+,+,+) ( [4] uses

the sign convention (+,−,−,−), favored by particle physicists without the proper respect

for time). This metric is used to raise and lower indices, so we have xµ = ηµνx
ν =⇒ x0 =

−x0, xi = xi. The “physics” in this case will mean the value of the wavefunction. To see

that the value of the wavefunction is the same between reference frames, we should show

that the equation that governs the wavefunction is a Lorentz scalar. Lorentz scalars have

the same value in different reference frames. For example, the spatial length of something

is not a Lorentz scalar, since lengths contract between reference frames, but the spacetime

length as measured by −∆t2 + ∆x2 + ∆y2 + ∆z2 is a Lorentz scalar. When we use index

notation, Lorentz scalars are objects with no free indices (the invariant spacetime length can

be represented for example as xµxµ, all indices are contracted).

We can see that the Klein-Gordon equation has all indices contracted. For that we remind

ourselves of the definition of 4-derivatives,

∂µ ≡
∂

∂xµ
=

(
1

c

∂

∂t
,∇i

)
(2.17)

∂µ ≡ ∂

∂xµ
=

(
−1

c

∂

∂t
,∇i

)
(2.18)

We can therefore write the Klein-Gordon equation as

(∂µ∂
µ −m2c2/~2)ψ(xi, t) = 0 . (2.19)

Notice that all indices are contracted. ∂µ∂
µ is sometimes written as �, a relativistic gener-

alization of 4 ..= ∇2 (get it? � has 4 corners and 4 has 3.) So the equation governing the

wavefunction is Lorentz invariant; success!

An essential aspect of quantum mechanics, however, is that probability is conserved.

This means that the norm of the wavefunction, i.e. the integrated probability amplitude∫
dV 〈ψ(xi, t)|ψ(xi, t)〉 =

∫
dV |ψ(xi, t)

2| is time-independent (and equal to 1, by normaliza-

tion of the wavefunction). This is usually done by taking the time derivative of |ψ|2 and

using the Schrödinger equation (and its complex conjugate) to rewrite the expression as the

divergence of something usually called the “probability current” (since the time derivative

gives ψ∂tψ
∗ + ψ∗∂tψ any (real-valued) potential cancels between the two terms after using

the Schrödinger equation). We integrate over the volume of spacetime using the divergence
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theorem to rewrite it as a boundary term only. But since the wavefunction is required to go

to zero at infinity, this boundary term vanishes and we find that the time derivative of the

norm of the wavefunction vanishes.

Since our new equation has a second time derivative in it, this procedure does not work

in the same way, and in fact the norm of the wavefunction is not preserved in time. That is

a disaster!

An attempt to deal with this was made by Dirac, who postulated an equation that is

linear in time and space derivatives:

(i~γµ∂µ −mc)ψ(x) = 0 . (2.20)

Since we are still warming up with index notation, let’s write this a little more carefully:

(i~(γµ)ab∂µ −mcδab)ψ(x)b = 0 . (2.21)

We have two sets of indices: the Greek ones e.g. µ, ν refer to 4-vectors and the spacetime

symmetry. The Latin ones e.g. a, b are a new index on the field ψ. It turns out that in this

equation the Latin indices run over 1, 2, 3, 4. Since the Greek indices are contracted, that

means this is a 4× 1 vector equation, i.e. it packages together four equations. This equation

is also problematic, as it turns out that the Hamiltonian has negative eigenvalues for every

positive eigenvalue! See Section 1 of [1] for details.

So the naive attempts at a relativistic quantum-mechanical equation for a particle seem

to fail. But why do we suddenly introduce fields as the correct way to proceed? Here are

several fantastic reasons:

� We already know classical fields are important in describing the physics of our world.

For example, the theory of electromagnetism is governed by the electric/magnetic fields,

which take values over all of space and time. So it seems natural to develop a quan-

tum theory of fields if we want to quantize such theories (this motivation is more

phenomenological and unlike the following ones, which proceed simply from trying to

make the principles of quantum mechanics consistent with those of special relativity).

� Relativity says that rest mass is not a conserved quantity; instead, 4-momentum pµ

is consderved, and p0 = γm for a particle of mass m moving at speed v with gamma

factor γ = (1 − v2/c2)−1/2. So, if rest mass is not conserved, there is no explicit

conservation law forbidding, say, a particle of mass M decaying into two particles of

mass m1 and m2 with m1 + m2 < M , with the difference in energy made up by their

velocities. In physics, what is not expressly forbidden must occur. So we must be able
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to accommodate it, and the non-relativistic Schrödinger equation doesn’t. We will see

that quantum fields allow this to occur. (A more phenomenological perspective is that

we know atoms can have their electrons drop to a lower orbital and emit a photon, so

we should accommodate particle creation).

� In the Klein-Gordon equation and the Dirac equation, we still have the structure fa-

miliar from the Schrödinger equation where there is a position operator x̂ but no time

operator t̂. Since special relativity unifies space and time we need to fix this. We

can promote t̂ to an operator; this is the worldline formalism which we will not pur-

sue. We will instead demote x̂ to just a position coordinate x. Both x and t will

be arguments of quantum fields, e.g. φ̂(x, t); this operator is written in the Heisen-

berg picture where states are time-independent and operators are time-dependent,

φ̂(x, t) = eiĤt/~φ(x, 0)e−iĤt/~.1 These objects φ̂ and their canonical conjugates π̂ are

what will enter into canonical commutation relations, instead of x̂ and p̂. So, with all

due apologies to position, its status must be demoted for us to continue with quantum

field theory.

In physics, whenever a new framework is developed, it should reproduce the old framework

in the appropriate limit. For example, special relativity reproduces Newtonian mechanics for

v � c and general relativity reproduces Newtonian gravity when the field strengths are

small. So whatever QFT we develop should reduce to nonrelativistic quantum-mechanics in

an appropriate limit. It could be that the field concept is not useful in this limit, but it

should still be there.2 Rather than develop QFT and then take this limit (which would take

a while to get to), let’s just see if we can rewrite nonrelativistic quantum mechanics as a

quantum theory of fields. We begin with the Schrödinger equation for n interacting particles,

each of mass m:

i~
∂

∂t
ψ(x1, . . .xn; t) =

 n∑
j=1

(
− ~2

2m
∇2
j + U(xj)

)
+

n∑
j=1

j−1∑
k=1

V (xj − xk)

ψ(x1, . . .xn; t)(2.22)

Working in the Schrödinger picture we introduce the quantum field a(x) and a†(x) with

commutation relations

[a(x), a(x′)] = [a†(x), a†(x′)] = 0 , [a(x), a†(x′)] = δ3(x− x′) . (2.23)

1Recall that this is related to the Schrödinger picture where the states are time-dependent |ψ, t〉 = e−iHt|ψ〉
by a change of basis by the unitary operator e−iHt.

2A useful analogy is provided by general relativity; when field strengths are small we can just use Newtonian
gravity, but if we took a small field-strength limit starting from general relativity we get a curved spacetime
representation of Newtonian gravity.

13



These are fields because they depend on space (and in the Heisenberg picture would depend

on time as well), and they are quantum because they obey a version of the commutation

relations you are used to from quantum mechanics. They are like the ladder operators you

are used to from the harmonic oscillator, except we have an independent set at every spatial

point! We now propose the Hamiltonian

H =

∫
d3x a†(x)

(
− ~2

2m
∇2 + U(x)

)
a(x) +

1

2

∫
d3x d3y V (x− y)a†(x)a†(y)a(y)a(x) .(2.24)

We define the vacuum state |0〉 like in the harmonic oscillator:

a(x)|0〉 = 0 . (2.25)

The vacuum is annihilated by the lowering operator at any spatial point x. From this vacuum

we can construct an excited state by applying the raising operators at arbitrary spatial points

|ψ, t〉 =

∫
d3x1 . . . d

3xn ψ(x1, . . . ,xn; t)a†(x1) . . . a
†(xn)|0〉 . (2.26)

With this definition of |ψ, t〉 and Hamiltonian we can verify that the Schrödinger equation

i~∂t|ψ, t〉 = H|ψ, t〉 is satisfied if and only if ψ(x1, . . . ,xn; t) satisfies (2.22).

Now we can interpret the creation operators as creating particles at particular positions.

The vacuum |0〉 is the state with no particles, a†(x1)|0〉 is a state with a particle at position

x1, etc. There is a conserved “number operator”

N =

∫
d3x a†(x)a(x) , (2.27)

which counts the total number of particles. It is conserved because [N,H] = 0. (Notice

for simplicity we are now dropping the hats on quantum operators, a convention we will

mostly maintain in the rest of these notes – whether we have an operator or an eigenvalue

should hopefully be clear from context, although it will take some getting used to!) So, as

is appropriate for the non-relativistic Schrödinger equation, particles can move around and

interact, but they cannot be created or destroyed.

Example 2: Let’s check that N commutes with the potential term in H. We have the com-

mutator ∫
d3z d3x d3y V (x− y)

[
a†(z)a(z), a†(x)a†(y)a(y)a(x)

]
(2.28)
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where we pulled all c-numbers outside of the commutator. We can repeatedly apply the rule

[AB,C] = A[B,C]+ [A,C]B to simplify this expression, or we can write out the commutator

expression and use [a(x), a†(x′)] = δ3(x − x′) =⇒ a(x)a†(x′) = a†(x′)a(x) + δ3(x − x′) to

move ladder operators past one another at the cost of a delta function (raising operators can

move past other raising operators at no cost, similarly for lowering operators). So the first

term of the commutator we can write as (ignoring the overall integration against V (x− y))

a†(z)a(z)a†(x)a†(y)a(y)a(x) = a†(z)a†(x)a†(y)a(y)a(x)a(z) (2.29)

+a†(z)a†(y)a(y)a(x)δ3(z− x) + a†(z)a†(x)a(y)a(x)δ3(z− y) , (2.30)

where we moved a(z) all the way to the right and picked up delta-function costs along the

way. The second term of the commutator we can instead move a†(z) all the way to the left

and pick up delta-function costs to get

a†(x)a†(y)a(y)a(x)a†(z)a(z) = a†(z)a†(x)a†(y)a(y)a(x)a(z) (2.31)

+a†(x)a†(y)a(y)a(z)δ3(x− z) + a†(x)a†(y)a(x)a(z)δ3(y − z) , (2.32)

Using identities like δ3(x − z) = δ3(z − x), a†(x)a†(y) = a†(y)a†(x), and a(z)δ3(y − z) =

a(y)δ3(y − z), we see that the difference of these two terms vanishes.

The commutation of N with H was guaranteed by the fact that H had the same number

of raising and lowering operators in each term in H. But now we can imagine changing this

by adding a term to the Hamiltonian

∆H ∝
∫
d3x

[
a†(x)a2(x) + a†(x)2a(x)

]
. (2.33)

Looking back at the exercise above, we see that when we move a to the right of ∆H in the

first term of the commutator we will pick up one delta function, but when we move a† to

the left we will pick up two delta functions. So their difference (even after doing the spatial

integrals) will not vanish.

Example 3: We claimed that the operator

N =

∫
d3x a†(x)a(x) (2.34)

which counts the total number of particles is conserved for our proposed Hamiltonian (2.24).
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But we noticed something even stronger is true, at least for the potential term in the Hamil-

tonian. In that case we didn’t even need to do the spatial integrals to see that the operators

commuted: the integrand of the potential term commuted with the integrand of N . This

means the potential term conserves the number of particles at any given spatial point. This

is because each a(x) comes with an a†(x) at the same spatial point. So if you annihilate a par-

ticle at a spatial point you also have to create one at the same point. The kinetic term in H

violates this due to the gradient term; if you repeat the exercise to compute the commutator

you will find a derivative of a delta function that appears for one term in the commutator and

not the other. This term vanishes only when you integrate over all of space. Intuitively, this is

because the kinetic term is responsible for propagation: you annihilate a particle at x, propa-

gate a little bit with ∇2, and then create a particle nearby. This intuition comes from Taylor

expanding, e.g. for a function of a scalar variable a(x+ ε) = a(x) + εa′(x) + ε2a′′(x)/2 + . . . .

So the second derivative is constructing the function nearby, at x+ ε.

We can write a potential term which also annihilates a particle in one place and creates

it someplace else. Then we should again see that such a term keeps the total number of

particles conserved, but not the number at a given spatial point. We write

∆H ∝
∫
d3x d3y a†(x)a(y) (2.35)

We don’t add the Hermitian conjugate because this is already Hermitian, like the terms in

(2.24). But it is nonlocal, since it is written as a double integral and has the physical effect

we mentioned before. We have

[N,∆H] =

∫
d3z d3x d3y

(
a†(z)a(y)δ3(z− x)− a†(x)a(z)δ3(y − z)

)
(2.36)

The integrand is nonzero (since the delta functions are different), reflecting the fact that this

term breaks conservation of particle number at a spatial point, but the integral vanishes,

reflecting the fact that the total number of particles is conserved.

Let’s return to (2.26) and define

ψ(x1, . . . ,xn; t)a†(x1) . . . a
†(xn) ≡Mx1...xnXx1...xn (2.37)

By the commutativity of the creation operators we have that X is totally symmetric in all

its indices x1 through xn. This means that we can restrict to tensors M that are totally

symmetric in all their indices, since any antisymmetric piece will vanish after integration
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in the expression (2.26).3 Such wavefunctions have Bose-Einstein statistics and describe

bosons. For Fermi-Dirac statistics, we have to define anticommutation relations for our

quantum fields:

{a(x), a(x′)} = {a†(x), a†(x′)} = 0 , {a(x), a†(x′)} = δ3(x− x′) (2.38)

where {A,B} ≡ AB + BA is called the anticommutator. In this case, we have that only

the totally antisymmetric part of ψ(x1, . . .xn; t) survives the integration in (2.26). This is a

theory of fermions.4

We now turn to developing a relativistic QFT. We will see that it will solve all of our

problems very elegantly. It will allow for particle creation/annihilation, and it will resolve

the acausal propagation we explored in Example 1. It will do the latter by requiring the

existence of antiparticles. Whenever we see a nonzero value for a propagator from x1 to x2,

it will be cancelled by an equal and opposite contribution by an antiparticle propagator from

x2 to x1!

Before beginning, we will review the harmonic oscillator and classical field theory in the

next two sections, since (perturbative) QFT is to some extent a merger of these two concepts.

3Recall that any two-dimensional matrix Mij can be written as the sum of a symmetric matrix and
antisymmetric matrix, Mij = Sij +Aij with 2Sij = Mij +Mji, 2Aij = Mij −Mji, and that a contraction of a
symmetric matrix Sij with an antisymmetric matrix Aij gives SijA

ij = −SjiAji = −SijAij =⇒ SijA
ij = 0.

Higher-rank tensors can be written as the sum of a totally symmetric tensor, a totally antisymmetric tensor,
and a mixed symmetry tensor. But the relevant point is that the mixed symmetry tensor will be antisymmetric
in some pair of indices, which will lead to the vanishing of (2.26).

4When we write a relativistic QFT, it will have to obey the spin-statistics theorem, which says that
interacting bosons have integer spin while interacting fermions have half-integer spin. In our example above
the particles have spin zero (since there is no label on the quantum fields that could account for spin), yet
they could be bosons or fermions depending on whether we defined commutation relations or anticommutation
relations. See the beginning of Section 3.5 of [5] for an illustration of what goes wrong when you try to give
fermionic quantum fields commutation relations. Spoiler: the energy becomes unbounded below.
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3 The harmonic oscillator

In the words of Sidney Coleman, ”The career of a young theoretical physicist consists of

treating the harmonic oscillator in ever-increasing levels of abstraction.” So let’s go through

a few levels now. The classical equation of motion is

m
d2q

dt2
+ kq = 0 . (3.1)

This has plane wave solutions e±iωt with ω = +
√
k/m. The general solution is therefore a

linear combination

q(t) = a1e
−iωt + a2e

iωt , ω =
√
k/m . (3.2)

Requiring q be real, q? = q, enforces a2 = a?1
..= a?, which gives

q(t) = ae−iωt + a?eiωt , ω =
√
k/m . (3.3)

The classical Hamiltonian is given by kinetic plus potential energy:

H(q, p) =
p2

2m
+
mω2q2

2
. (3.4)

We can obtain the Lagrangian from this by a Legendre transform

L(q, q̇) = p(q, q̇)q̇ −H(q, p(q, q̇)) , q̇ ..=
∂H(q, p)

∂p
(3.5)

Notice on the RHS of the first expression the momentum p is written in terms of q, q̇ since

the Lagrangian is solely in terms of q, q̇. We solve for p(q, q̇) using the definition of q̇ to get

p(q, q̇) = mq̇ and plug into the expression for the Lagrangian to obtain

L(q, q̇) =
mq̇2

2
− mω2q2

2
. (3.6)

This is just the kinetic energy minus the potential energy. We can Legendre transform back

to the Hamiltonian using

H(q, p) = pq̇(q, p)− L(q, q̇(q, p)) , p ..=
∂L(q, q̇)

∂q̇
. (3.7)
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Again, we solve the latter equation to get q̇(q, p) = p/m and plug into the former equation.

The equation of motion (3.1) is obtained by the Euler-Lagrange equations:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 =⇒ −mω2q − d

dt
mq̇ = 0 =⇒ (3.1) . (3.8)

Given a classical Lagrangian, we can quantize the theory by computing the mo-

mentum p conjugate to the variable q and then imposing a commutation relation:

[q, p] = i~ . (3.9)

we will do precisely this when we get to QFT. You may recall that, after the intro-

duction of ladder operators a, a† with

[a, a†] = 1 , (3.10)

we have the representation

q =

√
~

2mω
(a† + a) , p = i

√
~mω

2
(a† − a) , H = ~ω(a†a+

1

2
) (3.11)

The time dependence of an operator O(t), in the Heisenberg picture, is given by

O(t) = eiHtO(0)e−iHt =⇒ i~
d

dt
O(t) = [O,H] . (3.12)

This means our ladder operator satisfy

i~
d

dt
a = [a,H] = [a, ~ω(a†a+

1

2
)] = ~ωa , i~

d

dt
a† = [a†, H] = −~ωa† . (3.13)

The second equation is the complex conjugate of the first, as required. These operator

equations have solutions

a(t) = e−iωta(0) , a(t)† = eiωta(0)† . (3.14)

Recalling our representation of q in terms of ladder operators, we can now write

q(t) =

√
~

2mω

(
a e−iωt + a†eiωt

)
. (3.15)

Notice the similarity to (3.3)! The coefficients a, a? have become the quantum ladder opera-

tors a, a† (so the complex conjugate got promoted to a Hermitian conjugate), with a trivial

19



change in normalization leading to the
√
~/(2mω) prefactor. We will see the same thing

occur when we go from classical field theory to quantum field theory below. This represen-

tation of the Heisenberg picture operator q(t) is not often shown in introductory quantum

mechanics since they almost exclusively work in the Schrödinger picture where you have a

time-independent operator q.
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4 Classical field theory

Before developing quantum field theory we should review a bit of classical field theory. This

describes a classical system where the fundamental variables describing the system are fields,

i.e. continuous functions of space and time. The electric and magnetic fields are a good

example. We will focus on classical field theories with Lorentz invariance. They can be

studied either through their Hamiltonian or their Lagrangian. We will introduce both but

will focus on the Lagrangian description when we develop QFT. I strongly suggest reviewing

Appendix A for some mathematical details, in particular about somewhat precise definitions

regarding functionals and variations.

4.1 Hamiltonians, Lagrangians, and the Euler-Lagrange equations

The Hamiltonian and Lagrangian can be written as integrals over space of a Hamiltonian

density H or Lagrangian density L, respectively:5

H[φ, π] =

∫
d3xH(φ, ∂iφ, π) , L[φ, φ̇] =

∫
d3xL(φ, ∂iφ, φ̇) . (4.1)

Usually we also call the unintegrated quantities H and L the Hamiltonian and Lagrangian.

Like in classical mechanics (cf (3.5) and (3.7)), the Hamiltonian and Lagrangian can be

obtained as Legendre transforms of one another:

L(φ, ∂iφ, φ̇) = π(φ, ∂iφ, φ̇)φ̇−H(φ, ∂iφ, π(φ, ∂iφ, φ̇)) , φ̇ ..=
∂H(φ, ∂iφ, π)

∂π
. (4.2)

Time derivatives are defined as φ̇ = ∂tφ = −∂tφ.

Practically, to obtain the Lagrangian from the Hamiltonian, we solve the second equation

for π as a function of φ, ∂iφ, and φ̇ and plug into the first equation. The inverse transform

is defined by

H(φ, ∂iφ, π) = πφ̇(φ, ∂iφ, π)− L(φ, ∂iφ, φ̇(φ, ∂iφ, π)) , π ..=
∂L(φ, ∂iφ, φ̇)

∂φ̇
. (4.3)

To obtain the Hamiltonian from the Lagrangian, we solve the second equation for φ̇ in terms

of φ, ∂iφ, and π and plug into the first equation. From here on out we will not be as careful

with the arguments of our functions!

5As discussed in Appendix A, the Lagrangian density and Hamiltonian density are functions, not func-
tionals, and this is represented with round brackets. So we leave off the spacetime dependence of the fields to
not clutter the notation.
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Example 1: Let’s compute the Hamiltonian from the Lagrangian in a simple example. The

Lagrangian for a scalar field φ with potential V (φ) looks like:6

L = −1

2
∂µφ∂

µφ− V (φ) =
1

2
φ̇2 − 1

2
(~∇φ)2 − V (φ) . (4.4)

The canonically conjugate momentum is given by π = ∂L
∂φ̇

= φ̇, which gives φ̇(φ, ∂iφ, π) = π.

This means the Hamiltonian is

H = πφ̇− L =
1

2
π2 +

1

2
(~∇φ)2 + V (φ) . (4.5)

We see that we can again interpret the Hamiltonian as a sum of kinetic (12π
2) and poten-

tial (12(~∇φ)2 + V (φ)) energy, while the Lagrangian is the kinetic (12 φ̇
2) minus the potential

(12(~∇φ)2 + V (φ)) energy

We will soon see that the Hamiltonian H =
∫
d3xH corresponds to a conserved quantity,

the total energy, while the Lagrangian does not. While this is nice, it also means the descrip-

tion of the system is not manifestly Lorentz invariant, since the energy is the 0 component of

the four-momentum pµ = (E, pi). The energy density H is instead the 00 component of the

energy-momentum tensor Tµν . In fact we can see from our example above that H is not a

Lorentz scalar. For this reason we will focus on the Lagrangian, which is manifestly Lorentz

invariant since it is a Lorentz scalar.

Using the Lagrangian we can define the action as usual,

S[φ] =

∫
dtL[φ(t), φ̇(t)] =

∫
d4xL(φ(x), ∂µφ(x)) . (4.6)

We get the equations of motion by imposing the principle of least action, δS = 0. To vary the

action we imagine varying φ→ φ+ αδφ for infinitesimal α and arbitrary δφ which vanishes

at any boundaries of spacetime. Restricting to Lagrangians that are just a function of the

field and its first derivative, L(φ, ∂µφ), we get

δS[φ] =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
(4.7)

6This is the first place where you will see our use of (−,+,+,+) signature give a formula that looks
different than what you’d get with (+,−,−,−) signature; in the latter case the derivative term is 1

2
∂µφ∂

µφ.
When expanded into components, either signature gives a positive time-derivative term and negative spatial
derivatives.
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The variation of φ everywhere in spacetime has induced variations of φ(x) and ∂µφ(x), i.e.

the field and its first derivative at a given spacetime point.

Using (A.7) to write δ(∂µφ(x)) = ∂µ(δφ(x)) and integrating by parts (ignoring the bound-

ary term since we assumed the variation δφ vanishes there), we get

δS[φ] =

∫
d4x

(
∂L
∂φ(x)

− ∂µ
∂L

∂(∂µφ(x))

)
δφ(x) . (4.8)

We demand stationarity of the action δS = 0 for arbitrary variation δφ, which gives

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
(4.9)

by the fundamental lemma of the calculus of variations.

Example 2: Let’s compute the Euler-Lagrange equations for a self-interacting scalar field the-

ory:

S =

∫
d4x

(
−1

2
∂µφ∂

µφ− V (φ)

)
. (4.10)

We have

∂L
∂φ

= −V ′(φ) ,
∂L

∂(∂µφ)
= −1

2

∂(∂νφ∂
νφ)

∂(∂µφ)
= −1

2
(δµν ∂

νφ+ δµν∂νφ) = −∂µφ . (4.11)

=⇒ ∂µ∂
µφ = V ′(φ) =⇒ �φ− V ′(φ) = 0 , (4.12)

where we defined � = ∂µ∂
µ = ∂2 = ηµν∂µ∂ν , the d’Alembert operator or d’Alembertian. So

in components we have � = −∂2t + ∂2x + ∂2y + ∂2z (due to our metric signature (−,+,+,+)),

which has an overall minus sign to how the operator is defined in some references (so in those

references the EOM would be written �φ+ V ′(φ) = 0).

If we pick V (φ) = m2φ2/2, then we get the Klein-Gordon equation:

(�−m2)φ = 0 . (4.13)

This is the equation of motion for a massive, free scalar field.
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4.2 Noether’s theorem

The theorem due to Emmy Noether has deep impact throughout many branches of physics.

It says that any system with a Lagrangian description that is invariant under a continuous

symmetry has a locally conserved quantity. A symmetry is a transformation of the

fields that leaves the Lagrangian invariant up to a total divergence, and there-

fore leaves the equations of motion invariant.7 Some examples of Noether’s theorem:

translation invariance in space implies momentum conservation and translation invariance in

time implies energy conservation. Rather than investigating what field transformations do to

the EOM directly, we will instead investigate what they do to the Lagrangian (and therefore

the action, which is the fundamental object).

The massive scalar field Lagrangian L = −1
2(∂φ)2 − m2φ2/2 has a discrete symmetry,

φ → −φ. It is discrete because you cannot do the transformation by an arbitrary “small”

amount: you either do it or you don’t. To get a continuous symmetry lets consider a complex

scalar field φ with mass m, which has Lagrangian

L = |∂µφ|2 −m2|φ|2 . (4.14)

This is still invariant under φ→ −φ, but notice there is a bigger symmetry group, φ→ e−iαφ

for any α ∈ R. This is a complex phase rotation of φ, by an arbitrary amount α. So we

can do the transformation by a small amount (the case α = π gives us the transformation

φ → −φ). A nice way to think about the complex scalar field is that it is two real scalar

fields, φ = φ1 + iφ2, or as two complex conjugate fields φ, φ? = φ1 − iφ2. The Lagrangian

can be written in the latter basis as

L = ∂µφ∂
µφ? −m2φφ? , (4.15)

and the symmetry transformation is

φ→ e−iαφ , φ? → eiαφ? . (4.16)

Unlike when we derived the Euler-Lagrange equations, in this case δφi need not

go to zero at the boundaries of spacetime. Let’s now prove Noether’s theorem.

—————————————————————————————————————————

7There also exist symmetries of the equations of motion that do not transform the Lagrangian by a total
derivative, e.g. electromagnetic duality in Maxwell theory, the discrete version of which is swapping the
electric and magnetic fields. This changes the Lagrangian E2 −B2 by flipping the overall sign. Continuous
symmetries of the equations of motion which do not leave the Lagrangian invariant up to a total divergence
do not have corresponding conserved quantities derivable from the procedure in this section.
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Warm-up Noether’s theorem: Consider a Lagrangian density that is a function of N

scalar fields φi, and a symmetry transformation that can mix any subset of these N scalar

fields, φi → φi + αδφi with infinitesimal α. We assume that the symmetry leaves the La-

grangian invariant, δL = 0. Then there exists a conserved current jµ:

∂µj
µ = 0 with jµ =

∂L
∂(∂µφi)

δφi . (4.17)

Proof: The change in the Lagrangian density, as shown in (4.7), is

δL =
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi) . (4.18)

Since the i index is contracted there is an implicit sum over the N fields. We use δ(∂µφi) =

∂µ(δφi) from (A.7) to rewrite this as

δL =

(
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δφi + ∂µ

(
∂L

∂(∂µφi)
δφi

)
. (4.19)

In this case we do not drop the total derivative, since δφi and ∂L/∂(∂µφi) do not have to go

to zero at the boundaries, so they can contribute to δS. This is a totally general expression

for the variation of a Lagrangian with dependence L(φ, ∂µφ).

To derive the Noether current, we will now impose the EOM. This means the current will

only be conserved when the EOM are satisfied.8 We get

δL = ∂µ

(
∂L

∂(∂µφi)
δφi

)
. (4.20)

Since this equals zero by assumption, we get (4.17).

—————————————————————————————————————————

The above is the form of Noether’s theorem that we will mostly need. But there is a more

powerful version of the theorem. The basic point is that δL = 0 was too restrictive – the

Lagrangian density can change by a boundary term, and this won’t affect the equations of

motion, since the equations of motion are derived by arbitrary variations which don’t mess

with the boundary, i.e. they go to zero there. So let’s prove the more powerful theorem.

—————————————————————————————————————————

General Noether’s theorem: Consider a Lagrangian density with symmetry transforma-

tion as before, φi → φi + αδφi with infinitesimal α. We assume that the symmetry leaves

8There are more powerful currents that are conserved even when the EOM are not satisfied, for example
in 2d scalar field theory we have jµ = εµν∂νφ.
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the Lagrangian invariant up to a total divergence,

δL = ∂µK
µ . (4.21)

Then there exists a conserved current jµ:

∂µj
µ = 0 with jµ =

∂L
∂(∂µφi)

δφi −Kµ . (4.22)

Proof: We have the same expression (4.20) for the variation of the Lagrangian density once

the EOM are imposed, except now we have to set it equal to (4.21). This gives

∂µ

(
∂L

∂(∂µφi)
δφi

)
= ∂µK

µ , (4.23)

which we can rewrite as (4.22).

—————————————————————————————————————————

From a conserved current jµ one can always define a conserved charge as

Q =

∫
d3x j0 ,

d

dt
Q = 0 . (4.24)

Now that we have proved the theorems, we would like to apply them in certain examples.

The general Noether theorem looks a bit perplexing from this point of view: to get a concrete

expression for jµ, we need two expressions for δL, since they are equated in the proof of the

theorem. But if we use literally the same expression for both, then we will find jµ = 0. This

is conserved but useless. The basic point is that in any example we want to see that (4.21) is

true without using the equations of motion.9 This is because (4.21) is our statement of what

a symmetry is, and a symmetry leaves our EOM unchanged. We should not use the EOM

to show that the EOM remain unchanged!

Example 3: Let’s compute the Noether current coming from the symmetry φ → e−iαφ,

φ? → eiαφ? acting on the Lagrangian L = ∂νφ∂
νφ? −m2φφ?. The Lagrangian is invariant

under this transformation, δL = 0, so Kµ is a constant vector which we can take to be zero,

since the conservation of a constant vector is not terribly exciting. Using

δφ ..=
∂φ

∂α

∣∣∣
α=0

= −iφ , δφ? = iφ? (4.25)

9Using the EOM one will just find (4.20), i.e. Kµ = ∂L
∂(∂µφi)

δφi, leading to jµ = 0. But if we don’t impose

the EOM, then once we strip the derivative from ∂µK
µ to define Kµ, imposing the EOM will no longer lead

to Kµ = ∂L
∂(∂µφi)

δφi
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gives

jµ =
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ?)

δφ? = −iφδµν ∂νφ? + iφ?δνµ∂νφ = i(φ?∂µφ− φ∂µφ?) . (4.26)

Notice the current is real, as expected since the Lagrangian is real.

Example 4: Let’s consider an example with Kµ 6= 0. This example will be a spacetime sym-

metry, where the transformation of the fields is induced by a transformation of the spacetime

point they depend on. We consider spacetime translations

xµ → xµ − αξµ (4.27)

for some (arbitrary) consant ξµ. The Lagrangian is a scalar function of the spacetime position,

so Taylor expanding around α = 0 to first order gives

L(x+ αξ) = L(x) + αξν∂νL(x) +O(α2) =⇒ δL = ∂ν(ξνL) . (4.28)

Similarly, the transformation of a field gives10

φ(x)→ φi(x+ αξ) = φ(x) + ξν∂νφ(x) +O(α2) =⇒ δφ = ξν∂νφ . (4.29)

Phrased this way, we interpret the symmetry transformation as replacing the field by itself

plus some derivative of itself, at the same spacetime point. So the coordinates don’t change.

This is the right way to think since the fundamental object is the action, which

just depends on field configurations over all spacetime, not coordinates.

We compute the Noether current

jµ = ξν
∂L

∂(∂µφi)
∂νφi − ξµL (4.30)

This gives four independent currents, one for each choice of direction to translate in, i.e. the

choices ξµ ∈ {δµt , δ
µ
x , δ

µ
y , δ

µ
z }. To see this, we can repackage the conserved currents into an

10To understand why the coordinate change x→ x− αξ corresponds to transforming a field as φ(x+ αξ),
it helps to picture a field φ depending on two spatial coordinates drawn on a piece of paper. Place this on
top of another piece of paper that has the coordinates x drawn. Transforming the coordinates (the bottom
piece of paper) one way is the same as transforming the field (the top piece of paper) the opposite way.
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object known as the stress tensor Tµν through jµ = −ξνTµν , which gives

Tµν = − ∂L
∂(∂µφi)

∂νφi + ηµνL . (4.31)

Another way to see this is to “factor out” ξν from (4.30). Since the term ξµL has a µ index

instead of a ν index we need to stick in a ηµν to change the index, and that gives us Tµν and

therefore Tµν .

This seems too good to be true, since almost no assumptions went into this derivation.

Indeed, the stress tensor gives a set of four conserved currents for any Lorentz-invariant

quantum field theory. The important (implicit) assumption was that the Lagrangian density

did not depend on spacetime position explicitly; if it did, then recalling that we transform

the fields but not the coordinates means that L does not transform as a total derivative,

since we cannot obtain its transformation law by L(x+ aξ) = L(x) + αδL(x), as that would

transform the explicit coordinates as well.

For a scalar field theory L = −1
2∂µφ∂

µφ− V (φ) we have (recall φ̇ = ∂tφ = −∂tφ)

T 00 = φ̇2 − L =
1

2
φ̇2 +

1

2
(~∇φ)2 + V (φ) =

1

2
π2 +

1

2
(~∇φ)2 + V (φ) (4.32)

which agrees with the energy density H obtained in (4.5) by Legendre transforming the

Lagrangian. The momentum densities are given by

T 0j = −φ̇∂jφ = −π∂jφ . (4.33)

So we have the energy-momentum four-vector

Pµ =

∫
d3xT 0µ . (4.34)

The other diagonal components T jj in the stress energy tensor have the interpretation of

pressures, while the off-diagonal components T jk have the interpretation of shears.

28



5 Canonical quantization of scalar fields

We consider free, massive scalar field theory:

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 + Ω0 . (5.1)

We have allowed ourselves an arbitrary additive constant Ω0, which does not affect the

Euler-Lagrange equations:

δS = 0 =⇒ (−∂2 +m2)φ = 0 . (5.2)

Plane waves eik·x±iωkt are solutions to this equation, with arbitrary momentum k and fre-

quency satisfying ω2
k = k2 + m2. We take ωk ≥ 0 and write the general solution as an

arbitrary superposition of such plane waves

φ(x, t) =

∫
d3k

f(k)

[
a(k)eik·x−iωkt + b(k)eik·x+iωkt

]
. (5.3)

The function f(k) can be absorbed into the a(k) and b(k), but we will keep it for reasons

soon to be apparent.11 We need to impose φ? = φ, since our scalar field is real. This gives

φ?(x, t) =

∫
d3k

f(k)

[
a?(k)e−ik·x+iωkt + b?(k)e−ik·x−iωkt

]
(5.4)

=

∫
d3k

f(k)

[
a?(k)e−ik·x+iωkt + b?(−k)eik·x−iωkt

]
(5.5)

where we relabeled the dummy variable k → −k in the b?(k) term. Equating with (5.3)

requires b?(−k) = a(k), which gives

φ(x, t) =

∫
d3k

f(k)

[
a(k)eik·x−iωkt + a?(−k)eik·x+iωkt

]
(5.6)

=

∫
d3k

f(k)

[
a(k)eik·x−iωkt + a?(k)e−ik·x+iωkt

]
(5.7)

=

∫
d3k

f(k)

[
a(k)eikx + a?(k)e−ikx

]
. (5.8)

11Recall that plane-wave solutions to the nonrelativistic Schrödinger equation look like ψ ∼ eik·x−iE(k)t)

with E(k) = k2/(2m). This is why we cannot interpret the field φ as a wavefunction, since the b(k) term
would correspond to negative-energy excitations E(k) = −ωk < 0.
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We defined the shorthand kx ..= kµxµ = ηµνk
µxν = −ωkt + k · x where kµ = (ωk,k) and

xµ = (t,x). So we have k2 = k2 − k20 and to satisfy the Euler-Lagrange equations we have

k2 = −m2 =⇒ k20 = ω2
k = k2 +m2 . (5.9)

A four-momentum which satisfies this is called “on the mass shell” or “on shell.” This just

means the EOM are satisfied.

We will now use our freedom in f(k) to fix a convention. We would like to interpret

d3k/f(k) as an integration measure, and part of our convention will be that it should be

Lorentz-invariant. This fixes f(k) ∼ ωk. This can be seen by beginning with a Lorentz

invariant measure

d4k

(2π)3
δ(k2 +m2)Θ(k0) , (5.10)

where Θ is the Heaviside step function and the (2π)−3 is a convention. The d4k is Lorentz

invariant since a Lorentz transformation kµ → Λµνkν gives d4k = | det Λ|d4k = d4k. The

delta function is Lorentz invariant since the argument is a Lorentz scalar with all indices

contracted. The Heaviside step function looks non-invariant since it singles out k0, but

notice that it equals 1 for all k0 ≥ 0 and equals 0 otherwise. The sign of the zero component

of a 4-vector cannot be changed under a Lorentz transformation, so this is also invariant.

In this expression we think of kµ = (k0, ki) with k0 general, i.e. not necessarily equal to

ωk =
√

k2 +m2 (although the point of the delta function will be to enforce this). Integrating

over the measure gives∫
d4k δ(k2 +m2)Θ(k0)F (k0,k) =

∫
d3k

∫ ∞
−∞
dk0 δ(k2 +m2)Θ(k0)F (k0,k) =

1

2ωk
F (ωk,k)(5.11)

where we used ∫ ∞
−∞

dx δ(g(x))F (x) =
∑
i

F (xi)

|g′(xi)|
(5.12)

where the xi are simple zeroes of g(x). F (k0,k) is like the term in brackets in (5.8), but with

k0 general, i.e. not equal to ωk. The point of the Heaviside function was to eliminate the

zero k0 = −ωk, so that we get (5.8) once the delta function fixes k0 = ωk. So we finally have

φ(x) =

∫
d3k

(2π)32ωk

[
a(k)eikx + a?(k)e−ikx

]
(5.13)
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Try to work out the inversion formula which gives a(k) in terms of φ(x); if stuck, consult

Chapter 3 of [1].

Recall that we wrote the classical solution to the harmonic oscillator as q =

ae−iωt + a?eiωt in (3.3). When passing to the quantum harmonic oscillator a, a?

became the ladder operators a, a† in the expression for the position operator q̂ in

(3.15). Here we have an infinite family of harmonic oscillators, one for each k, so

we should expect the same to occur when passing from the classical field φ(x) to

the quantum field operator φ̂(x), and indeed that is precisely what will happen!

To quantize the theory, we first obtain the Hamiltonian density H(φ, π). This was done

in (4.5):

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 − Ω0 . (5.14)

We can write a classical expression for the Hamiltonian H =
∫
d3xH using (5.13) and

π(x) = φ̇(x) (see (3.26) of [1] for details):

−Ω0V +
1

2

∫
d3k

(2π)32ωk
ωk (a?(k)a(k) + a(k)a?(k)) , (5.15)

where we have not commuted a and a? past one another in anticipation of going to the

quantum theory.

Now let’s pass to the quantum theory by imposing canonical commutation relations.

These are done on the variables/fields of the theory and their canonically conjugate momenta.

For example in multiparticle quantum mechanics we impose

[qi, qj ] = 0 , [pi, pj ] = 0 , [qi, pj ] = iδij . (5.16)

These are usually thought of as commutators in the Schrödinger picture, but they can be

interpreted as equal-time commutators in the Heisenberg picture, i.e. [qi(t), pj(t)] = i. In our

case, we want to take this finite discrete set into a continuous infinity of spacetime points.

Again doing this at equal times we impose

[φ(x, t), φ(x′, t)] = 0 , [π(x, t), π(x′, t)] = 0 , [φ(x, t), π(x′, t)] = iδ3(x− x′) . (5.17)

These relations imply

[a(k), a(k′)] = 0 , [a†(k), a†(k′)] = 0 , [a(k), a†(k′)] = (2π)32ωk δ
3(k− k′) . (5.18)
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While the universal approach to quantization is to impose the commutation relations on

the dynamical fields and their conjugate momenta, it may help bridge the gap to ordinary

quantum mechanics to imagine imposing them on the infinity of ladder operators (5.18) and

seeing what this says about the fields and their momenta (5.17).

As predicted above, the quantum field becomes

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)eikx + a†(k)e−ikx

)
, (5.19)

where the classical fields a(k), a?(k) have been upgraded to quantum operators a(k), a†(k).

This quantum field satisfies the Klein-Gordon equation (∂2 − m2)φ = 0 just like the clas-

sical field. The quantum Hamiltonian H =
∫
d3xH can be obtained from the classical one

(5.15) by the same procedure. In complete analogy to the quantum harmonic oscillator,

which outputs H = ω(a†a + 1/2), we find (using (5.18) to write a(k)a?(k) → a(k)a†(k) =

a†(k)a(k) + (2π)32ωkδ
3(k− k′))

H =

∫
d3k

(2π)32ωk
ωka

†(k)a(k) + (E0 − Ω0)V (5.20)

where V is the volume of space and

E0 =
1

2
(2π)−3

∫
d3k ωk (5.21)

is the total zero-point energy of all the oscillators per unit volume V (where we interpreted

V = (2π)3δ3(0)). The innocuous 1/2 becomes a bit troubling when there are a continuous

infinity of them. The constant Ω0 was introduced precisely to get rid of this infinity; we

simply choose Ω0 = E0 to normalize our ground state energy to zero. (In quantum mechanics

an overall shift to the Hamiltonian has no physical consequence, only energy differences are

meaningul; gravity is another story.) Anyway, we see that the total Hamiltonian is indeed the

“sum” (i.e. integral) of individual harmonic oscillator Hamiltonians, one for each momentum

k.

Recall that the classical Hamiltonian can also be written as H =
∫
d3xT 00, as shown in

(4.32). Similarly, we can write the total momentum as

P j =

∫
d3xT 0j = −

∫
d3xπ(x)∂jφ(x) −→ P =

∫
d3k

(2π)32ωk
k a(k)†a(k) . (5.22)
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The commutation relations (5.18) let us show12

[H, a†(k)] = ωka
†(k) , [H, a(k)] = −ωka(k) . (5.23)

[P, a†(k)] = k a†(k) , [P, a(k)] = −k a(k) . (5.24)

With a quantum Hamiltonian in hand, the Hilbert space is simply the space of eigenvectors

of this operator. But it is simpler to work with ladder operators. The vacuum is defined by

a(k)|0〉 = 0 for all k , 〈0|0〉 = 1 . (5.25)

In the same way that the creation operator a† builds up the Hilbert space of the quantum

harmonic oscillator, here the family of a†(k) build up the Hilbert space in quantum field

theory:

a†(k)|0〉 = |k〉 =⇒ H|k〉 = ωk|k〉 , P|k〉 = k|k〉 . (5.26)

So |k〉 is an eigenstate of the Hamiltonian H and momentum P. It is interpreted as a state

with a single particle with 4-momentum satisfying k2 = −m2, as before. We could have

written |k〉 as |k〉 to emphasize that the 3-vector is arbitrary but the 4-vector is not. Notice

also that calling it a particle does not mean it is localized in space; after all, it is a momentum

eigenstate!

We compute the normalization of 1-particle momentum eigenstates using (5.18):

〈k′|k〉 = 〈0|a(k)a†(k′)|0〉 = 〈0|a†(k′)a(k)|0〉+ (2π)32ωkδ
3(k− k′) = (2π)32ωkδ

3(k− k′) .(5.27)

The resolution of the identity in the sector of 1-particle states is given by

1 =

∫
d3k

(2π)32ωk
|k〉〈k| . (5.28)

This is checked by

1|k′〉 =

∫
d3k

(2π)32ωk
|k〉〈k|k′〉 =

∫
d3k |k〉δ3(k− k′) = |k′〉 . (5.29)

12This may be a bit confusing, since it looks like the operator a(k) (and a†(k)) is time-independent, which
would seem to suggest that [H, a(k)] = −i∂ta(k) = 0 through the Heisenberg equations of motion (3.12). But
all operators are in the Heisenberg picture and have time-dependence, so a(k) ..= a(k, t = 0).
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We build n-particle states as

a†(k1) · · · a†(kn)|0〉 = |k1, . . . , kn〉 . (5.30)

These are eigenstates of H, P with energy ωk1 + · · ·+ωkn and momentum k1+ · · ·kn. Notice

a key difference from the interpretation in the case of the harmonic oscillator: there, applying

multiple annihilation operators did not increase the number of particles. We only ever had

one particle.

The overlaps between n-particle states and m-particle states vanishes for n 6= m. This

means that the Hilbert space of quantum mechanics becomes a special sort of Hilbert space

in quantum field theory called a Fock space:

F = ⊕nHn . (5.31)

It is the direct sum of Hilbert spaces for n particles, over all n. For a single species of particle,

states in each Hn are linear combinations of states {|k1, . . . , kn〉} of all possible momenta

ki satisfying k2i = −m2 and k0i > 0. Abstractly, for bosonic theories as we considered

above, each Hn is a symmetrization of n copies of a single-particle Hilbert space, e.g. since

a†(k1)a
†(k2) = a†(k2)a

†(k1) we have |ψi, ψj〉n=2 = cij |ψi〉n=1 ⊗ |ψj〉n=1 + cji|ψj〉n=1|ψi〉n=1

for arbitrary cij . This structure is built into the Hilbert space we constructed above, and is

true more generally. For fermionic Hilbert spaces each Hn is an antisymmetrization of the

single-particle Hilbert space.

Let’s see what the field operator φ(x, t = 0) does by acting on the vacuum:

φ(x)|0〉 =

∫
d3k

(2π)32ωk

(
a(k)eik·x + a†(k)e−ik·x

)
|0〉 =

∫
d3k

(2π)32ωk
e−ik·x|k〉 . (5.32)

This is a superposition of single-particle states with momentum k. This is similar to what

we see in nonrelativistic quantum mechanics when expressing |x〉 in the momentum basis.

So we want to interpret φ(x) as creating a particle at position x. Indeed, taking an overlap

with a single-particle momentum eigenstate, we find:

〈p|φ(x)|0〉 = 〈0|a(p)

∫
d3k

(2π)32ωk

(
a(k)eik·x + a†(k)e−ik·x

)
|0〉 (5.33)

= 〈0|
∫
d3k e−ik·xδ3(k− p)|0〉 = e−ip·x . (5.34)

This is the same (up to normalization) as the projection of a position eigenstate onto a
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momentum eigenstate in nonrelativistic quantum mechanics:

〈p|x〉 = e−ip·x/
√

2π . (5.35)

So we can identify φ(x)|0〉 = |x〉, i.e. φ(x) creates a particle at position x. This is to be

expected, since φ has a structure similar to the operator which creates position eigenstates in

quantum mechanics, x ∼ a+a†. In the way that φ(x) is analogous to x, π(x) is analogous to

p. But π(x) does not create states with a given physical momentum; instead, it also creates

a state at position x. Another interpretation of the above quantities is that the vacuum-to-

one particle matrix elements of the field operator φ give the plane-wave wavefunctions from

nonrelativistic quantum mechanics for a particle in a momentum eigenstate. In this way, the

quantum-mechanical limit of this quantum field theory is given by restricting to 1-particle

states; see (2.82) - (2.87) of [4].

6 A hint of the spin-statistics theorem

If we wanted a theory of fermions in the previous section, then presumably we just replace

the commutators by anticommutators. The problem with this, however, is that when we

pass from the classical Hamiltonian to the quantum one, we get a?(k)a(k) + a(k)a?(k) →
a†(k)a(k) + a(k)a†(k) = (2π)32ω δ3(k − k′), which leads to H = (E0 − Ω0)V , a constant.

This is a hint of the spin-statistics theorem, which we now prove for spin-zero particles.

The basic principle we will use is causality. In quantum mechanics observables that

commmute are simultaneously diagonalizable and hence simultaneously observable. They

should therefore not be able to influence each other. In relativity, if points are spacelike

separated then they should not be able to communicate, i.e. measurements at one point

should not affect measurements at the other point. Together, this suggests the causality

criterion, that observables at spacelike separation commute:

[O1(x),O2(y)] = 0 , (x− y)2 > 0 . (6.1)

This actually can be shown to follow from Lorentz invariance of the S-matrix. The basic

idea is then just that these observables are built out of the φ fields in the Lagrangian which

therefore have to commute. As we saw in (2.37), this commutativity leads to symmetric

wavefunctions and therefore Bose-Einstein statistics. While this seems like it should force

fermionic particles to commute as well, it turns out that observables are bilinear in spinors and

have integer spin. This is the reason why causality cannot be used to prove the spin-statistics

theorem for fermionic particles. (The theorem instead makes fermions anticommute, which
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leads to antisymmetric wavefunctions and Fermi-Dirac statistics.)

To see this idea in practice, consider the theory of a charged scalar field considered before,

L = |∂φ|2. The conserved current in (4.26) implies a charge density j0 = i(φ†∂0φ− (∂0φ
†)φ).

This is an observable, so we should have [j0(x, t = 0), j0(y, t = 0)] = 0. This is indeed true

when the theory is quantized as in the previous section (where we now have two fields, φ

and φ†), since φ(x, t = 0) and ∂0φ(x, t = 0) commute with φ(y, t = 0) and ∂0φ(y, t = 0).

However, if we quantize the fields or the ladder operators with anticommutation relations,

we will no longer find the charge density observable to commute at spacelike separation.

7 Correlation functions in quantum field theory

The fundamental measurable quantities in quantum mechanics and quantum field theory

are correlation functions. Recall that in classical probability theory, for a random variable13

Y (s) and a probability distribution P (s) over the space of possible outcomes s ∈ R, we often

compute the quantities

〈Y n〉 ..=
∫ ∞
−∞

dsP (s)Y (s)n . (7.1)

Y (s) is a user-chosen function of the space of possible outcomes. The mean or expectation

value 〈Y 〉 is given by n = 1, the variance is given by 〈Y 2〉 − 〈Y 〉2, and higher moments are

given by higher n. When people refer to the mean or variance of the distribution P (s) instead

of some function Y , they are implicitly referring to the case where Y (s) = s. In this case

they will say that the random variable Y has probability distribution P (s). This should fit

your intuition, since Y = s and s has probability according to P (s).

We can have our random variable depend on spacetime, Y (x), in which case the com-

putable quantities can be richer:

〈Y (x1) · · ·Y (xn)〉 =

∫ ∞
−∞

dsP (s)Y (s, x1) · · ·Y (s, xn) . (7.2)

For n = 2, this measures how correlated Y (x1) and Y (x2) are (technically this is called the

covariance and the correlation is a normalized version of this). Often we measure correlation

functions (like in cosmology), and infer from them a probability distribution.

In quantum field theory the correlation functions can be defined very analogously once

we introduce the path integral in the next section, but for now we will use our direct Hilbert

13The term “random variable” is pretty confusing – think of it just as a function. To see why people call it
“random” think of the case Y (s) = s and the simple set of outcomes of e.g. a die roll or a coin flip.
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space picture. The expectation value of a quantum field in the vacuum is given by

〈φ(x)〉 ..= 〈0|φ(x)|0〉 . (7.3)

When we have angled brackets without a specified quantum state, we assume it to be the

vacuum as in the above definition. This one-point function vanishes for the scalar field we

constructed in the previous section. A two-point correlation function is given by

〈φ(x)φ(y)〉 ..= 〈0|φ(x)φ(y)|0〉 . (7.4)

We can compute this using (5.18):

〈0|
∫

d3k

(2π)32ωk

(
a(k)eikx + a†(k)e−ikx

)∫ d3k′

(2π)32ωk′

(
a(k′)eik

′y + a†(k′)e−ik
′y
)
|0〉 (7.5)

= 〈0|
∫

d3k

(2π)32ωk

d3k′

(2π)32ωk′
a(k)eikxa†(k′)e−ik

′y|0〉 (7.6)

=

∫
d3k

(2π)32ωk

d3k′

(2π)32ωk′
eikxe−ik

′y(2π)32ωkδ
3(k− k′)〈0|0〉 (7.7)

=

∫
d3k

(2π)32
√

k2 +m2
eik(x−y) . (7.8)

Example 1: Let’s evaluate the integral (7.8), considering the cases of purely timelike and

purely spacelike separation separately. For purely timelike, x = y and x0 − y0 = t, and we

define k ..= |k| (notice the double-use of notation: this is the magnitude of the 3-momentum

below, not the 4-momentum as it was before!) to get

〈φ(x)φ(y)〉 =

∫
k2 sin θ dkdθdφ

(2π)32
√
k2 +m2

e−it
√
k2+m2

=
1

4π2

∫ ∞
0

dk k2

2
√
k2 +m2

e−it
√
k2+m2

(7.9)

(7.10)

=
1

4π2

∫ ∞
m

dE
√
E2 −m2 e−iEt = − imK1(imt)

4π2t
, (7.11)

where we changed variables from k =
√
E2 −m2 to E. The integral was done with Math-

ematica, obtaining a modified Bessel function of the second kind K1.
14 We can instead

evaluate it by hand at large t by stationary phase. This method gives E ≈ m − i
2t as the

14To make the integral converge we need to make t slightly complex, t → t − iε. This also means that
the final answer should have t → t − iε, which is needed to ensure the full correlator at arbitrary separation
satisfies the equation of motion and not a Green’s function equation. Without it there is a singularity as
t2 → x2 + y2 + z2 which leads to a Green’s function when acted upon with �−m2.
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point of stationary phase, which implies (we include the prefactor in the stationary phase

approximation)

lim
t→∞
〈φ(x)φ(y)〉 ∼

√
m

t3/2
e−imt . (7.12)

This scaling precisely agrees with the expansion of the Bessel function K1 at large t.

If we pick a purely spacelike separation, x0 = y0 and x− y = r, we find

〈φ(x)φ(y)〉 =

∫
k2 sin θ dkdθdφ

(2π)3
eikr cos θ

2
√
k2 +m2

=
1

4π2

∫ ∞
0

dk
k2

2
√
k2 +m2

eikr − e−ikr

ikr
(7.13)

(7.14)

=
−i

8π2r

∫ ∞
−∞

dk
keikr√
k2 +m2

(7.15)

We evaluate this using complex analysis. This integrand has branch cuts beginning at k =

±im; we direct the branch cut at k = +im upward to i∞ and the one at k = −im downward

to −i∞. Since the integrand decays exponentially as k → i∞, we can close the contour to

hug the branch cut in the upper half plane. We define κ = ik to write

〈φ(x)φ(y)〉 =
1

4π2r

∫ ∞
m

dκ
κe−κr√
κ2 −m2

=
m

4π2r
K1(mr) . (7.16)

We again could have evaluated the final integral by steepest descent, which would give

κ ≈ m− 1
2r as the saddle point, leading to (we include the prefactor in the stationary phase

approximation)

lim
r→∞
〈φ(x)φ(y)〉 ∼

√
m

r3/2
e−mr . (7.17)

We see that the field has nonvanishing correlation for (arbitrarily large) spacelike separation,

but does go to zero, satisfying what is known as “cluster decomposition.”

One can also consider correlation functions in excited states 〈f |φ(x)φ(y)|f〉, or we can

consider “overlaps” 〈f |φ(x)φ(y)|i〉, but often this is written in terms of a bigger correla-

tor in the vacuum, e.g. in (5.33) we wrote the overlap 〈p|φ(x)|0〉 as the vacuum cor-

relator 〈0|a(p)φ(x)|0〉. And of course we can (and will) consider higher-point functions

〈φ(x1) · · ·φ(xn)〉.
The fact that 〈φ(x)φ(y)〉 is nonzero for spacelike separation seems acausal. But the correct
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measure of causality was discussed in the previous section, and is instead [φ(x), φ(y)] = 0

for spacelike separation. The commutator is a pure number so we do not need to evalu-

ate it in the vacuum; the fact that it is zero means it is zero in any state! For x0 = y0

we can simply use the equal-time commutators to see that this vanishes, but it is true for

arbitrary spacelike separation. To see this, lets evaluate the commutator in the vacuum,

〈[φ(x), φ(y)]〉 = 〈φ(x)φ(y)〉− 〈φ(y)φ(x) and notice that 〈phi(y)φ(x)〉 for spacelike separation

can be computed exactly like 〈φ(x)φ(y)〉 in the example above, since the method only de-

pended on r = |x− y|. For timelike separation, however, 〈[φ(x), φ(y)]〉 is nonzero. The fact

that this object can be identically zero for a set of nonzero measure but not zero everywhere

is because this object is a distribution, not an analytic function of x and y.

The two-point function ∆(x− y) ..= 〈φ(x)φ(y)〉 is sometimes called the Wightman func-

tion. It satisfies the Klein-Gordon equation:

(−∂2x +m2)∆(x− y) = 0 . (7.18)

If we have a source on the right-hand-side, then we would solve the equation via the Green’s

function method (see Appendix C for a review). This means we need to first solve

(−∂2x +m2)G(x− y) = δ4(x− y) . (7.19)

Fourier transforming

G(x− y) =

∫
d4k

(2π)4
eik(x−y)G̃(k) (7.20)

gives

(k2 +m2)G̃(k) = 1 =⇒ G(x− y) =

∫
d4k

(2π)4
eik(x−y)

1

k2 +m2
. (7.21)

This is the massive generalization of (C.40). We need to integrate this over k0 ∈ R. But

there are singularities at k2 + m2 = −(k0)2 + k2 + m2 = 0, i.e. there are simple poles

at k0 = ±ωk = ±
√

k2 +m2. To define the integral, we need to dodge these poles by a

small excursion upward or downward into the complex plane. The two choices per pole

gives four possible definitions for this integral. Going above both poles defines the retarded

propagator:

GR(x− y) ..= iθ(x0 − y0)〈0|[φ(x), φ(y)]|0〉 . (7.22)
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To recover this expression and analogous ones below, close the k0 contour downward for

x0 > y0 and upward otherwise; the two terms of the commutator come from the two poles.

Recall from Appendix C that the retarded propagator results from fixing the field and its

time derivative at some time (in this case at x0 = y0) and tells you how to propagate into

the future (x0 > y0).

Going below both poles defines the advanced propagator:

GA(x− y) ..= iθ(y0 − x0)〈0|[φ(x), φ(y)]|0〉 . (7.23)

The advanced propagator results from fixing the field and its time derivative at some time

(in this case at x0 = y0) and tells you how to propagate into the past (x0 < y0).

Going below the pole k0 = −ωk and above the pole k0 = +ωk defines the time-ordered

or Feynman propagator (doing the opposite defines the anti-Feynman propagator GAF ):

GF (x− y) =

i∆(x− y) for x0 > y0

i∆(y − x) for x0 < y0
(7.24)

We can write this by defining the time-ordering symbol T , which means we should put the

operators in order from left to right beginning with the latest time on the left (the anti-

Feynman propagator has an anti-time-ordering symbol, which puts operators in the opposite

order):

GF (x− y) = i〈0|Tφ(x)φ(y)|0〉 ..= iθ(x0 − y0)〈0|φ(x)φ(y)|0〉+ iθ(y0 − x0)〈0|φ(y)φ(x)|0〉.(7.25)

This prescription is also often written as

GF (x− y) ..=

∫
d4k

(2π)4
eik(x−y)

k2 +m2 − iε
, (7.26)

because then the poles are at k0 = −ωk+iε/(2ωk) and k0 = +ωk−iε/(2ωk). We can therefore

run the k0 contour exactly along the real line, which naturally goes below the first pole and

above the second one. When closing the contour, we only ever pick up one of the two poles,

which is why we only ever get the correlator ∆ and not the commutator [φ(x), φ(y)].

Example 2: Let’s check that GF (x− y) solves the Green’s function equation:

(−∂2x +m2)GF (x− y) = δ4(x− y) . (7.27)
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We will use the representation (7.25) and the fact that the two-point function ∆ satisfies the

Klein-Gordon equation (7.18). The first term in GF gives (we drop the x subscript on the

derivative to reduce clutter)

i
[
−∂2θ(x0 − y0)

]
∆(x− y)− 2i∂µΘ(x0 − y0)∂µ∆(x− y)− iθ(x0 − y0)(∂2 −m2)∆(x− y) (7.28)

= −iδ′(x0 − y0)〈φ(x)φ(y)〉 − 2iδ(x0 − y0)〈π(x)φ(y)〉 = −iδ(x0 − y0)〈π(x)φ(y)〉 (7.29)

where we integrated by parts in the last step (since these expressions are formally defined

under integrals). The second term in GF gives

i
[
−∂2θ(y0 − x0)

]
∆(y − x)− 2i∂µθ(y0 − x0)∂µ∆(y − x) = iδ(x0 − y0)〈φ(y)π(x)〉 (7.30)

The full expression is therefore

(−∂2 +m2)GF = −iδ(x0 − y0)〈[π(x), φ(y)]〉 = δ4(x− y) . (7.31)

Notice in the last line we could evaluate the commutator at x0 = y0 due to the delta function.

The calculations for GAF , GR and GA are similar.

For more on the retarded and advanced propagators, and how they result from choices of

boundary conditions in the physical problem of interest, see the beginning of Appendix C.

It was pretty straightforward to compute the correlation function and various Green’s

functions built out of them in our free field theory. But we would like to consider more

complicated theories, which can have nonlinear self-interactions and many species of particles.

An example of using the Green’s function method to compute the solution to a nonlinear

equation of motion, perturbatively in the nonlinearity, is given in Appendix C. This procedure

was exhibited in a purely classical field theory and was shown to be encapsulated in a set

of Feynman diagrams. To compute correlation functions in quantum field theory we will

set up a similar machinery, generalized to include quantum fluctuations. The primary new

ingredient is that the lines in the classical Feynman diagrams can now close in on themselves.

While we can set up a Feynman diagrammatic expansion to calculate any of ∆, GR, GA,

GF , or GAF , we will see in Section 11 that GF is the relevant object to eventually compute

scattering amplitudes. So we will orient our diagrammatic expansion around computing GF .

The quickest way to derive the Feynman diagrams is through the path integral representation

of quantum mechanics, which we now turn to.

41



7.1 Where did the wavefunction go?

In nonrelativistic quantum mechanics, we are obsessed with the wavefunction. It is given

by taking the overlap 〈x|ψ(t)〉 =: ψ(x, t) between a state in the Hilbert space |ψ(t)〉 and a

position eigenstate |x〉. It evolves via the Schrödinger equation, i~∂tψ(x, t) = Hψ(x, t). This

gives us a physical picture through the probability |ψ(x, t)|2 for the particle to be found at

position x at time t. For a time-independent Hamiltonian, we are instructed to compute the

eigenvectors and eigenvalues of the Hamiltonian, from which we can construct a general state

in the Hilbert space and calculate its time evolution. Notice this is all in the Schrödinger

picture, since the state |ψ(t)〉 depends on time. This is a useful framework since it is closely

connected to easily measurable quantities. Take the hydrogen atom, with its various orbitals

and energy levels. These are easily observable, say through photon emission. And the

probability amplitude |ψ(x, t)|2 gives us a physical picture of where the electron is likely to

be.

Since quantum field theory is just (relativistic) quantum mechanics, the wavefunction

and its interpretation continue to exist, only slightly modified. The relevant quantum

variables are now the fields and their conjugate momenta, so we upgrade the wavefuntion

ψ(x, t) ..= 〈x|ψ(t)〉 to the wavefunctional Ψ[φ; t] ..= 〈φ|Ψ(t)〉. The object |φ〉 is a field eigen-

state, φ̂(x)|φ〉 = φ(x)|φ〉, exactly analogous to the position eigenstate |x〉. There is such

an eigenstate for every given field configuration φ. Instead of computing the probability to

find the particle at some location x, the natural quantity is the probability that the field

has the configuration φ. This wavefunctional evolves according to the functional Schrödinger

equation

i~∂tΨ[φ; t] = HΨ[φ; t] (7.32)

where the representation of the momentum density is given by π(x) = −i~ δ
δφ(x) . While

this structure exists in quantum field theory, it is not discussed in many textbooks, which

tend to focus more on computing quantities relevant for particle phenomenology, i.e. S-matrix

elements. For these, the Heisenberg picture where the states do not evolve in time tends to be

more natural, due to the central role played by expectation values of time-ordered operators.

You will see that texts written by condensed matter physicists show the Schrödinger picture

more love.

So, whether quantum mechanics or quantum field theory, the structure of the theory

allows the calculation of eigenvectors/eigenvalues of the Hamiltonian, correlation functions

of time-dependent operators, or time-dependent wavefunctions/wavefunctionals. Which we

choose to focus on is primarily a function of what is easily measurable in experiments. The
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physical picture of a universe described by quantum field theory, however, remains that of

a state in a Hilbert space, which can give probability amplitudes for observing certain field

configurations or their conjugate momenta (but not both!).

43



8 Path integrals in quantum mechanics

The path integral is a formulation of quantum mechanics (and quantum field theory) which

is precisely equivalent to the canonical formalism we have developed so far. A heuristic

understanding of the path integral is given by considering the double-slit experiment. The

explanation for the interference pattern is that the particle goes through both slits as long

as you’re not looking. But now you can imagine putting another screen with two more slits.

The particle should go through 2× 2 = 4 possible paths. More screens with more slits leads

to even more paths. Now imagine punching more slits per screen – that leads to many more

paths! We can imagine punching so many slits that the screens disappear altogether, and

we are led to the conclusion that the particle takes every possible path. This is the intuition

behind the path integral, but making it precise will take some work.

Let’s consider a generic quantum-mechanical Hamiltonian for a nonrelativistic particle:

H(p̂, q̂) =
p̂2

2m
+ V (q̂). (8.1)

We want to compute the amplitude for the particle at position q0 at time t0 to get to position

qf at time tf . This is given by

〈qf |e−iH(tf−t0)|qi〉 . (8.2)

We can split time up into N + 1 equal segments of length δt =
tf−t0
N+1 . After evolving for one

of these segments, we insert a complete set of states 1 =
∫
dq|q〉〈q|. We do this N times since

we have N + 1 segments and we get:

∫ N∏
k=1

dqk〈qf |e−iHδt|qN 〉〈qN |e−iHδt|qN−1〉〈qN−1| · · · |q1〉〈q1|e−iHδt|q0〉 . (8.3)

All we did is stick in the identity a bunch of times. The integrals range over all possible real

values. To split up the propagator eiHδt into momentum and position pieces we need to use

the Baker-Campbell-Hausdorff formula (technically the Zassenhaus formula) for operators

eA+B = eAeBe−
1
2
[A,B]e

1
6
(2[B,[A,B]]+[A,[A,B]]) · · · (8.4)
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Working to linear order in δt, however, lets us ignore all the noncommutative junk to write15

〈q1|e−iHδt|q0〉 ≈ 〈q1|e−i
p̂2

2m
δte−iV (q̂)δt|q0〉 = 〈q1|

∫
dp0 e

−i p̂
2

2m
δt|p0〉〈p0|e−iV (q̂)δt|q0〉 (8.5)

=

∫
dp0
2π

e−i
p20
2m

δte−iV (q0)δteip0(q1−q0) =

∫
dp0
2π

e−iH(p0,q0)δteip0(q1−q0) , (8.6)

where we inserted a complete set of momentum eigenstates and used 〈q|p〉 = eipq/
√

2π. Our

amplitude (8.3) therefore becomes

∫ N∏
k=1

dqk

N∏
j=0

dpj
2π

eipj(qj+1−qj)e−iH(pj ,qj)δt . (8.7)

Defining qj+1 − qj = q̇jδt and taking δt→ 0, N →∞ lets us write

∫ N∏
k=1

dqk

N∏
j=0

dpj
2π

ei(pj q̇j−H(pj ,qj))δt −→
∫
DqDp exp

(
i

~

∫ tf

t0

dt (pq̇ −H(p, q))

)
. (8.8)

We have reintroduced ~ in the final step. The limit of the product of integrals has become

a path integral, with measure DqDp. This path integral instructs us to integrate over

all paths in phase space with q(t0) = q0 (and arbitrary initial momentum) and q(tf ) = qf

(and arbitrary final momentum). It is annoying but conventional to not explicitly state the

boundary conditions of the path integral in the formula.

This integrand looks tantalizingly close to eiS for action S =
∫
dtL(q, q̇). To make this

connection precise we need to get rid of the momenta somehow. In the cases we consider the

Hamiltonian will be quadratic in momentum, for which we can do the path integral over the

momenta exactly. See Appendix D for a review of Gaussian integrals evaluated exactly and

by saddle point. Here we will evaluate the path integral over the momenta by saddle point:

∂p(pq̇ −H(p, q))|p? = 0 =⇒ q̇ =
∂H(p?, q)

∂p?
. (8.9)

This is just Hamilton’s equation! This means that solving for p? in terms of q, q̇ and using

this to approximate the path integral over p in (8.8) implements the Legendre transformation

15For Hamiltonians that have products of positions and momenta, a choice needs to be made about their
ordering when passing to the quantum theory. For the choice of “Weyl ordering” which keeps them symmetric
see Chapter 6 of [1].
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from Hamiltonian to Lagrangian (cf (3.5)) to give

〈qf |e−iH(tf−t0)|qi〉 =

∫
Dq exp

(
i

~

∫ tf

t0

dtL(q(t), q̇(t))

)
=

∫
Dq e

i
~S[q] . (8.10)

This saddle point approximation is good for small ~, whereas the phase space path integral

we began with is true for general ~. In the case where the integral over the momentum is

Gaussian the path integral over momenta is exactly calculable (i.e. for any ~) and agrees with

the saddle point approximation up to some computable prefactors that can be absorbed into

the definition of the measure Dq. Actually this is true even for more general Hamiltonians,

see Polchinski String Theory Vol. 1 Appendix A. So this Lagrangian path integral is quite

general.

The factor of ~ shows us how the classical equations are recovered. For ~→ 0,

we can evaluate this path integral by stationary phase, obtaining

δS

δq
= 0 =⇒ ∂L

∂q
=

d

dt

∂L

∂q̇
. (8.11)

These are just the Euler-Lagrange equations. Taking the path integral as funda-

mental, this provides an explanation for why classical solutions obey the principle

of least action!

The path integral is powerful enough to calculate correlation functions as well. It is

a little simpler for this to write the above overlap in the Heisenberg picture, where the

operator q̂(t) = eiHtq̂e−iHt and we define an instantaneous eigenstate q̂(t)|q, t〉 = q|q, t〉.
This eigenstate can be written as |q, t〉 = eiHt|q〉. (Don’t confuse this with the time evolution

of a Schrödinger picture quantum state, which comes with the opposite sign; we are in the

Heisenberg picture, so the instantaneous eigenstates are time-independent states!) The above

overlap we calculated was, in the Heisenberg picture, 〈qf , tf |qi, ti〉. But now let’s compute

the one-point function

〈qf , tf |q̂(t)|q0, t0〉 = 〈qf |eiHtf
(
eiHtq̂e−iHt

)
eiHt0 |q0〉 (8.12)

= 〈qf |e−iH(tf−t)q̂e−iH(t−t0)|q0〉 (8.13)

=

∫
dq〈qf |e−iH(tf−t)|q〉〈q|e−iH(t−t0)|q0〉 q (8.14)

=

∫
dq

(∫ qf ,tf

q,t
DpDq eiS

)(∫ q,t

q0,t0

DpDq eiS
)
q (8.15)

where t0 < t < tf and S =
∫
dt (pq̇−H). So we propagate up to time t, insert q, and continue
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propagating to tf . In the same way that pj and qj became p(t) and q(t) in (8.16), we will

have q become q(t) in the path integral. This is because the above expression says we do the

path integral of eiS over all times t′ between t0 and tf , except when t′ = t, in which case the

integral is over eiSq. If we could split off the integral over time t0 < t′ < tf then this would

be like a delta function insertion δ(t′− t)q(t′). Anyway, we can write the final expression as16

〈qf , tf |q̂(t)|q0, t0〉 =

∫
Dq q(t) eiS (8.16)

where S =
∫ tf
t0
dtL. To understand the RHS of (8.16) it may help to go from there to (8.15)

by discretizing the path integral as in (8.8).

Things get interesting when we compute a two-point function. For tf > t2 > t1 > t0,

repeating the above steps gives

t2 > t1 :

∫
Dq q(t2)q(t1) e

iS = 〈qf , tf |q̂(t2)q̂(t1)|q0, t0〉 . (8.17)

However, notice the LHS is symmetric under t1 ↔ t2 whereas the RHS is not. So this cannot

be the general answer for arbitrary t1, t2. To see why, let’s consider t2 < t1 and insert

complete sets of states to get

〈qf , tf |q̂(t2)q̂(t1)|q0, t0〉 = 〈qf |e−iH(tf−t2)q̂e−iH(t2−t1)q̂e−iH(t1−t0)|q0〉 (8.18)

=

∫
dq2 dq1〈qf |e−iH(tf−t2)|q2〉〈q2|e−iH(t2−t1)|q1〉〈q1|e−iH(t1−t0)|q0〉 q2q1 (8.19)

=

∫
dq1 dq2

∫ qf ,tf

q2,t2

Dq eiS
∫ q2,t2

q1,t1

Dq eiS
∫ q1,t1

q0,t0

Dq eiS q1q2 (8.20)

Things look a bit weird. We have to propagate from t0 past t2 to t1, insert q1, propagate

backward in time to t2, insert q2, and then propagate back up and past t1 to tf . Actually,

this is a totally legitimate expression (sometimes called timefolds), but we cannot eliminate

the dq1 and dq2 integrals as before to collapse this into a single path integral!17 For t2 > t1,

this expression can be collapsed into a single path integral as above.

We thus see that the natural object computed by the path integral is the time-ordered

16Since we will only be interested in correlation functions of the field operators (and not their conjugate
momenta), we can work with the Lagrangian path integral over Dq instead of the phase space one over DpDq,
since the path integral over momenta will be unaffected by any insertions and can be evaluated by saddle
point as before.

17We could write this as a single path integral that evolves backward in time, from tf to t2 to t1 to t0. This
is totally fine, but if we compute n-point functions, then we can only capture two time-orderings by using
this trick (i.e. we can compute time-ordered or anti-time-ordered correlators), whereas there are n! possible
time-orderings.
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correlation function or Feynman propagator:∫
Dq q(t2)q(t1) e

iS = 〈qf , tf |T [q̂(t2)q̂(t1)]|q0, t0〉 . (8.21)

The earlier field will always come out to the right of the later field. The time-ordered

correlator is also symmetric under t1 ↔ t2, as required. As already hinted, the input into

the LSZ reduction formula for scattering amplitudes is the time-ordered correlator, so this

formula is a coup. The generalization to many insertions is∫
Dq q(t1) · · · q(tn) eiS = 〈qf , tf |T [q̂(t1) · · · q̂(tn)]|q0, t0〉 . (8.22)

Another trick to calculate time-ordered correlators is the following. We imagine turning on

an “external” or “classical” source f(t) (meaning it is a variable we do not path integrate

over) which appears in the Lagrangian as

L(q, q̇)→ L(q, q̇) + f(t)q(t) . (8.23)

We then have the formulas

1

i

δ

δf(t1)
〈qf , tf |q0, t0〉f =

∫
Dq q(t1) e

i
∫
dt(L+fq) (8.24)

1

i

δ

δf(t1)
· · · 1

i

δ

δf(tn)
〈qf , tf |q0, t0〉f =

∫
Dq q(t1) · · · q(tn) ei

∫
dt(L+fq) (8.25)

Thus, to compute the time-ordered correlator of an arbitrary number of operators, we act

with these functional derivatives and in the end set f = 0:

〈qf , tf |T [q̂(t1) · · · q̂(tn)]|q0, t0〉 =
1

i

δ

δf(t1)
· · · 1

i

δ

δf(tn)
〈qf , tf |q0, t0〉

∣∣∣
f=0

.

=
1

i

δ

δf(t1)
· · · 1

i

δ

δf(tn)

∫
Dq ei

∫ tf
t0

dt (L+fq)
∣∣∣
f=0

.

(8.26)

Notice also that in our units where ~ = c = 1, f has dimensions of 1/length2, which is the

same as force in these units. So f has the interpretation of a force, which will become clearer

in the harmonic oscillator example in Section 8.1.
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Path integrals and probabilities

Let’s say that instead of ei(··· ) in the above expressions we had real quantities like e−(··· )

(this can be made precise by implementing a “Wick rotation” t → it). Then we can think

of our path integral
∫
Dq e−S as a probability distribution over possible paths q(t). This

identifies our correlators (8.22) as the path integral version of correlators from probability

theory (7.2). The formulas are conceptually identical. From this perspective we can also

understand
∫
Dq e−

∫
dt(L+fq) =

∫
Dq e−Se−

∫
dt fq in (8.26) as the moment generating

function (known as the probability generating function in the discrete case) of the prob-

ability distribution. For a continuous random variable X taking values over the reals with

probability density P (x), this is usually defined as

Z(s) =

∫ ∞
−∞

dxP (x) esx . (8.27)

The moments are computed from this formula by suitable derivatives

〈xn〉 =

(
d

ds

)n
Z(s)

∣∣∣
s=0

=

(
d

ds

)n ∫ ∞
−∞

dxP (x) esx

∣∣∣∣∣
s=0

. (8.28)

This is precisely analogous to (8.26).

Given this correspondence with probability distributions, which required an unexplained

Wick rotation to make sure we had real probabilities, can we simulate quantum mechanics

using Monte Carlo methods (i.e. sampling the distribution)? Yes! In quantum field theory

that often occurs in the subject of lattice gauge theory, which basically samples the prob-

ability distribution e−S (we need to discretize the space of field configurations to stand a

chance, hence the lattice).

Ground-state correlation functions

We have calculated time-ordered correlation functions between nontrivial initial and final

quantum states, |q0〉 and |qf 〉. These choices entered into the boundary conditions of the

path integral through the boundary conditions q(t0) = q0, q(tf ) = qf . What if we wanted

initial and final states |i〉, |j〉 that are not position eigenstates? As long as we know their

position-space wavefunctions we can write e.g.

|q0〉 −→ |i〉 =

∫
dq0|q0〉〈q0|i〉 =

∫
dq0 ψi(q0)|q0〉 (8.29)
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In other words we can multiply our position eigenstate by the appropriate wavefunction and

integrate, in addition to the rest of the path integral procedure outlined in this section. These

integrals are hard to carry out to accommodate generic states, but if we are interested in

the vacuum state |0〉 then we can use a trick. The basic idea is very simple. We write our

instantaneous position eigenstate in a basis of energy eigenstates

|q0, t0〉 = eiHt0 |q〉 = eiHt0
∞∑
n=0

|n〉〈n|q0〉 =
∞∑
n=0

eiEnt0ψ∗n(q0)|n〉 . (8.30)

Let’s assume our Hamiltonian is normalized so that the energies are nonnegative and E0 = 0.

Now if we take t0 → i∞, we see that we have a sum of exponential suppressions which become

very large, except for n = 0. All states are projected out except the vacuum. This is usually

implemented by instead continuing t0 → (1 − iε)t0 then taking t0 → −∞. Similarly, if we

have 〈qf , tf | = 〈qf |e−iHtf we can continue tf → (1− iε)tf and take tf → +∞ to pick out the

vacuum.

This is sometimes summarized, in the Schrödinger picture, by limt→(1−iε)∞ e
−iHt|i〉 ∝ |0〉,

i.e. infinitely long imaginary time evolution on an arbitrary state picks out the vacuum.

This trick means that we can calculate vacuum correlators with basically any initial and

final conditions for our path integral, as long as (a) we evolve with a slightly complexified

time t→ (1− iε)t and (b) we evolve for infinitely long, i.e. we take t0 → −∞ and tf → +∞.

Performing this in our phase space path integral gives

〈0|0〉f = lim
T→(1−iε)∞

∫
DpDq exp

[
i

∫ T

−T
dt (pq̇ −H + fq)

]
. (8.31)

We could equivalently write this as [1] does (cf (6.21)) by pulling the complexification from

the limits of integration into the measure and integrand through t→ (1− iε)t:

〈0|0〉f =

∫
DpDq exp

[
i

∫ ∞
−∞

dt (pq̇ − (1− iε)H + fq)

]
. (8.32)

Notice the (1− iε) that appears from the measure dt cancels against a (1− iε)−1 in pq̇. We

also redefined our source f to absorb this factor (which does not affect anything since it was

arbitrary to begin with). So the only term left with a (1− iε) is the Hamiltonian. We don’t

want to write a bunch of expressions with (1− iε) in the integrands like (8.32), and we don’t

want to have to explicitly write the contour (8.31) every time, so we will use the following
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notation:

〈0|0〉f =

∫
DpDq exp

[
i

∫ ∞
−∞

d̃t (pq̇ −H + fq)

]
. (8.33)

The measure d̃t means we should use the slightly complexified contour of (8.31). We can do

the momentum path integral and rewrite this in terms of a Lagrangian path integral

〈0|0〉f =

∫
Dq exp

[
i

∫ ∞
−∞

d̃t (L(q, q̇) + fq)

]
. (8.34)

Time-ordered correlation functions in this ground state are obtained by applying (8.26):

Ground state correlators

〈0|T [q̂(t1) · · · q̂(tn)]|0〉 =
1

i

δ

δf(t1)
· · · 1

i

δ

δf(tn)

∫
Dq ei

∫∞
−∞ d̃t (L+fq)

∣∣∣
f=0

=
1

i

δ

δf(t1)
· · · 1

i

δ

δf(tn)
〈0|0〉f

∣∣∣
f=0

.

(8.35)

Interactions

It helps to split the Hamiltonian as H = H0+λHint. H0 is the “free” Hamiltonian, quadratic

in the momenta and positions so that the path integrals can be done exactly. Hint is some-

times called the “interaction” Hamiltonian, and we cannot do the path integral over Hint

exactly. (For simplicity we will assume it only depends on the position q, although the gen-

eralization is straightforward.) The parameter λ is a coupling constant, and we will assume

that it is small and perform calculations perturbatively in λ. In the phase space path integral,

the way this works is as follows. We write

〈0|0〉f =

∫
DpDq exp

[
i

∫ ∞
−∞

d̃t (pq̇ −H0(p, q)− λH1(q) + fq)

]
(8.36)

= exp

[
−iλ

∫ ∞
−∞

d̃t H1

(
1

i

δ

δf

)]∫
DpDq exp

[
i

∫ ∞
−∞

d̃t (pq̇ −H0(p, q) + fq)

]
. (8.37)

The exponential on the outside is a functional differential operator, and by acting with it

on the path integral part we will convert the argument of H1 into q. This formula becomes

practical when we (a) perform the path integral exactly, which we can do since H0 is the free

Hamiltonian and therefore it is a Gaussian path integral, (b) expand the exponential outside

in a series in λ, which should give a good approximation with a few terms if λ is small. For

H0 = ap2 + bq+ cq2 and if we are only concerned with computing correlators of the position
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operator, we can write the Lagrangian path integral

〈0|0〉f = exp

[
iλ

∫ ∞
−∞

d̃t L1

(
1

i

δ

δf(t)

)]∫
Dq exp

[
i

∫ ∞
−∞

d̃t (L0(q, q̇) + fq)

]
, (8.38)

where L1(q) = −H1(q).

8.1 Path integral for the harmonic oscillator

Let’s do the simplest quantum-mechanical example, the harmonic oscillator. We want to

compute ground-state overlap 〈0|0〉f so we will use the slightly complexified contour above

to project to the vacuum. When we calculate the two-point function, it will be time-ordered

since we are using the path integral, 〈0|T (q(t1)q(t2))|0〉. But this is just the Feynman propa-

gator, whose contour integral representation (7.26) has explicit iε factors. Therefore it should

come as no surprise that the iε in the slightly complexified time (1− iε)t feeds in exactly to

become this iε factor in the Feynman propagator! Tracking the factors of ε is a bit ugly so

feel free to mentally set ε = 0 in a first pass.

We have the harmonic oscillator Hamiltonian

H =
p2

2m
+
mω2

2
q2 . (8.39)

We will set m = 1 and write the Lagrangian generating functional

〈0|0〉f =

∫
Dq exp

[
i

∫ ∞
−∞

d̃t

(
q̇2

2
− ω2

2
q2 + fq

)]
. (8.40)

Notice that the Euler-Lagrange equations following from this Lagrangian identify f as a

driving force, as alluded to in the previous section.

Pulling the complexification of the contour into the measure and integrand gives

〈0|0〉f =

∫
Dq exp

[
i

∫ ∞
−∞

dt

(
(1 + iε)

q̇2

2
− (1− iε)ω

2

2
q2 + fq

)]
, (8.41)

where we redefine the (arbitrary) source f to absorb (1− iε). While we should be confident

in Gaussian (path) integrals, the q̇ is a bit annoying, so let’s Fourier transform. Plugging

g(t) =

∫ ∞
−∞

dE

2π
e−iEtg̃(E) (8.42)

into (8.41) for the functions q(t) and f(t) lets us write the term in square brackets in (8.41)
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as

i

2

∫
dt

∫ ∞
−∞

dE

2π

dE′

2π
e−i(E+E′)t

[(
−(1 + iε)EE′ − (1− iε)ω2

)
q̃(E)q̃(E′) + 2f̃(E)q̃(E′)

]
(8.43)

We can write 2f̃(E)q̃(E′) = f̃(E)q̃(E′)+ f̃(E′)q̃(E) since the integrals of (e−i(E+E′)t×) these

two terms is identical due to an E ↔ E′ symmetry (this will help below). Performing the t

integral gives 2πδ(E + E′), and then performing the E′ integral sets E′ = −E. Altogether

this gives

i

2

∫ ∞
−∞

dE

2π

[(
(1 + iε)E2 − (1− iε)ω2

)
q̃(E)q̃(−E) + f̃(E)q̃(−E) + f̃(−E)q̃(E)

]
. (8.44)

The coefficient of the quadratic term in q̃ is E2−ω2 + i(E2 +ω2)ε; we can redefine ε to write

this as E2 − ω2 + iε. (8.44) is up in the exponential, so to do the path integral we need to

complete the square to get rid of the terms linear in q̃. This can be done by redefining

q̃(E) = x̃(E)− f̃(E)

E2 − ω2 + iε
. (8.45)

This shift corresponds to a shift q(t) → x(t) = q(t) + F (t) for F (t) the Fourier transform

of the second term on the RHS above. This shift by a function does not change the path

integral measure since it corresponds in the discretization to shifts by (different) constant

amounts for each ordinary integral. So Dq = Dx and we have

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dE

2π

f̃(E)f̃(−E)

−E2 + ω2 − iε

]
(8.46)

×
∫
Dx exp

[
i

2

∫ ∞
−∞

dE

2π
x̃(E)(E2 − ω2 + iε)x̃(−E)

]
. (8.47)

Notice that if we set f = 0, we just get the second line of the above. We normalize this norm

of the ground state to 1. That means for f 6= 0 we get just the first line above:

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dE

2π

f̃(E)f̃(−E)

−E2 + ω2 − iε

]
(8.48)
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The slick way

The above was a bit painful. In the end it’s telling us that there is a continuum generalization

of the formulas in Appendix D. Here is the slick way to do it using this fact from the outset.

It will seem like dark arts at first but you will get used to it.

The path integral we want to compute is∫
Dq exp

[∫ ∞
−∞

dt

(
q̇2

2
− ω2

2
q2 + fq

)]
(8.49)

where we consider the purely imaginary time t→ it. We integrate the first term by parts to

write this as ∫
Dq exp

[∫ ∞
−∞

dt

(
−1

2
q
(
∂2t + ω2

)
q + fq

)]
(8.50)

Defining the differential operator A = ∂2t + ω2 means that our path integral becomes∫
Dq exp

[∫ ∞
−∞

dt

(
−1

2
qAq + fq

)]
= exp

(
1

2

∫
dt dt′ f(t)A−1(t, t′)f(t′)

)
(8.51)

where the answer was obtained as the continuum generalization of (D.14). (The two indices

in (D.14) means we should have expected to obtain two times; see next section for some

technical details.) We have discussed in Appendix C that the inverse of a differential operator

is determined by the Green’s function:

(∂2t + ω2)A−1(t, t′) = δ(t− t′) =⇒ A−1(t, t′) =

∫
dE

−E2 + ω2
eiE(t−t′) . (8.52)

We see again the shorthand from (B.11) that in Fourier space ∂2t → −E2. Fourier transform-

ing f(t) and f(t′) as well gives

exp

(
1

2

∫
dt dt′

dE

2π

dE′

2π

dE′′

2π

f̃(E′)e−iE
′tf̃(E′′)e−iE

′′t′

−E2 + ω2
eiE(t−t′)

)
(8.53)

Performing the t and t′ integrals converts the phases into (2π)2δ(E − E′)δ(E + E′′), after

which performing the E′ and E′′ integrals sets E = E′ = −E′′. Up to the overall factor of i

and the factors of −iε in the denominator, this gives (8.48). The factor of −iε easily follows

if we restore the factors of ε in (8.49). And the overall factor of i simply follows from doing

the Gaussian phase version of this argument instead of the real Gaussian one we did above.
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A discretization (feel free to skip)

Before discretizing we write (8.49) as∫
Dq exp

[
−
∫ ∞
−∞

dt

∫ ∞
−∞

dt′δ(t− t′)
(
q̇(t)q̇(t′)

2
− ω2

2
q(t)q(t′) + f(t)q(t′)

)]
(8.54)

Discretizing this means we convert the two integrals in the exponential into two sums and

the path integral into a multidimensional integral:∫ ∞
−∞

dnq exp

[
−δt δt′

(
1

2
q̇iδij q̇

j − ω2

2
qiδijq

j + f iδijq
j

)]
. (8.55)

The time t became the index i, the time t′ became the index j, and the continuous Dirac delta

function δ(t− t′) became the discrete Kronecker delta function δij . Defining qi− qi−1 = q̇iδt,

qj − qj−1 = q̇jδt′ as before gives∫ ∞
−∞

dnq exp

[
−1

2
(qi − qi−1)δij(qj − qj−1)−

ω2

2
qiδijq

j δt δt′ + f iδijq
j δt δt′

]
(8.56)

for i = 1, . . . , n. Now we can write this as a multidimensional Gaussian integral in the form∫ ∞
−∞

dnq exp

[
−1

2
qiAijq

j + fiq
i

]
(8.57)

which will allow us to use (D.14). To accommodate the differences qi − qi−1 and qj − qj−1

just means we need an Aij with components on the diagonals immediately above and below

the main diagonal, i.e. nonzero components ai,i−1 and ai,i+1.

Correlation functions

Fourier transforming from energy E to time t lets us write 〈0|0〉f in (8.48) as

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dt dt′ f(t)G(t− t′)f(t′)

]
(8.58)

where

G(t− t′) =

∫ ∞
−∞

dE

2π

e−iE(t−t′)

−E2 + ω2 − iε
(8.59)
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is a Green’s function for the equation of motion(
∂2

∂t2
+ ω2

)
G(t− t′) = δ(t− t′) . (8.60)

To see this, plug (8.59) into (8.60) and take ε → 0. Notice that the appearance of the −iε
in the denominator means this is Feynman’s Green’s function aka the Feynman propagator,

which obeys particular boundary conditions. We will write it as G instead of GF from now

on since we will only ever be concerned with this Green’s function.

We can evaluate (8.59) by closing the contour and using the residue theorem. The

poles are at E = ±ω ∓ iε/(2ω). For t > t′ we close the contour below and pick up the

pole E = ω − iε/(2ω), while for t < t′ we close the contour above and pick up the pole

E = −ω+ iε/(2ω). The first contour is negatively oriented (clockwise) and gives −2πi times

the residue at the pole, while the second contour is positively oriented (counterclockwise)

and gives 2πi times the residue. Both cases can be packaged into

G(t− t′) =
i

2ω
exp

(
−iω|t− t′|

)
. (8.61)

We can calculate ground-state correlation functions by using (8.35) with (8.58). A functional

derivative acting on 〈0|0〉f brings down a Green’s function convolved with a source,18 e.g.

〈0|T [q(t1)q(t2)]|0〉 =
1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈0|0〉f

∣∣∣
f=0

(8.62)

=
1

i

δ

δf(t1)

∫ ∞
−∞

G(t2 − t′)f(t′) 〈0|0〉f
∣∣∣
f=0

(8.63)

=
1

i
G(t2 − t1) . (8.64)

Notice that δ/δf(t1) acts on 〈0|0〉f as well, but that term vanishes when we set f = 0 at the

end of the calculation.

We can compute arbitrary n-point time-ordered correlators this way. If n is odd, e.g.

n = 1, then there will be a stray f hanging around which when set to zero will set the entire

expression to zero. So these correlators vanish. For even 2n we get all 1
n!

(
2n
2

)(
2n−2

2

)
· · ·
(
2
2

)
=

(2n)!
n!2n ways of pairing up the derivatives, e.g.

〈0|T [q(t1)q(t2)q(t3)q(t4)|0〉 =
1

i2
[G12G34 +G13G24 +G14G23] (8.65)

18I always feel super smart when I say something is convolved with something else. It just means they are
multiplied together and then integrated.
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where Gij = G(ti − tj). More generally we have

Wick’s theorem: 〈0|T [q(t1) · · · q(t2n)]|0〉 =
1

in

∑
pairings

Gi1i2 · · ·Gi2n−1i2n . (8.66)

� You: I can’t believe Wick got a named theorem for this stupid result.

� Me: you’re welcome. The path-integral approach we’re using makes Wick’s theorem

pretty trivial. It’s nastier using “canonical” methods, see e.g. Section 7.A of [4] or

Section 4.3 of [5].
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9 Path integral for free field theory

9.1 A bridge from quantum mechanics to quantum field theory

One of the advantages of the path integral approach is that the similarity between quantum

mechanics and quantum field theory is even tighter. The equal-time canonical commutation

relations in the Heisenberg picture can be written as

[xa(t), pb(t)] = i~δab ←→ [φ(x, t), π(x ′, t)] = i~δ3(x− x ′) . (9.1)

The eigenstates of operators are

x̂|x〉 = x|x〉 , p̂|p〉 = p|p〉 ←→ φ̂(x)|φ〉 = φ(x)|φ〉 , π̂(x)|π〉 = π(x)|π〉 . (9.2)

This lets us generalize single-particle position-space wavefunctions to wavefunctionals of

quantum fields

ψ(x, t) = 〈x|ψ(t)〉 ←→ Ψ[φ; t] = 〈φ|Ψ(t)〉 , (9.3)

Both wavefunction and wavefunctional satisfy a Schrödinger equation:

i~∂tψ(x) = Ĥψ(x) ←→ i~∂tΨ[φ; t] = ĤΨ[φ; t] , (9.4)

where the latter equation is a functional equation due to the momentum density being

represented in the position basis as π(x) = −i~ δ
δφ(x) .

The overlap between eigenstates of canonically conjugate operators are

〈p|x〉 =
exp(−ip · x)

(2π)3/2
←→ 〈π|φ〉 = exp

(
−i
∫
d3xπ(x)φ(x)

)
(9.5)

and the resolution of the identity is modified as

1 =

∫
d3x |x〉〈x| =

∫
d3p |p〉〈p| ←→ 1 =

∫
Dπ(x) |π〉〈π| =

∫
Dφ(x) |φ〉〈φ| . (9.6)

We are in the Heisenberg picture, so these eigenstates do not evolve in time. That means

that this path integral, if we discretize it, corresponds to a bunch of integrals at a fixed time,

but over all points in space. That is what the notation Dφ(x), without a dependence on time,

is supposed to represent (contrast this with Dφ(x, t) in (9.11) below). For example, if we

were in one spatial dimension, we could write Dφ(x) = dφ1 dφ2 · · · dφN where we discretized
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space into a lattice of N points.

The overlap between different eigenstates of the same operator are modified from

〈x ′|x〉 =

∫
d3p 〈x′|p〉〈p|x〉 =

∫
d3p

(2π)3
exp(−ip · (x− x′)) = δ3(x− x′) (9.7)

to

〈φ′|φ〉 =

∫
Dπ(x)〈φ′|π〉〈π|φ〉 =

∫
Dπ(x) exp

(
−i
∫
d3xπ(x)[φ(x)− φ(x)′]

)
= δ[φ− φ′] .(9.8)

This is a functional Fourier transform with a functional Dirac delta distribution, satisfying∫
d3x f(x)δ3(x− x′) = f(x′) ←→

∫
Dφ(x)F [φ]δ[φ− φ′] = F [φ′] . (9.9)

9.2 Deriving the path integral

The path integral did not really illustrate its power in the case of the harmonic oscillator,

which IMO is more efficiently calculable with canonical methods. That is because the har-

monic oscillator is too simple, and it is rarely beneficial to use fancy techniques on simple

systems. But the fancy techniques will begin to show their power as we progress to non-

Gaussian theories (as in the the toy integral considered above) and gauge theories.

We consider the scalar field theory (4.4) with V (φ) = 1
2m

2φ2, which gives

H0 =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 ←→ L0 = −1

2
∂µφ∂

µφ− 1

2
m2φ2 . (9.10)

where the subscript 0 again refers to the fact that the theory is free, i.e. the path integral

is Gaussian. The variable q(t) from quantum mechanics has become the field φ(x, t), and

the source f(t) we will call J(x, t). To derive the path integral representation of 〈0|0〉J ,

we follow precisely the same steps as in the quantum-mechanical case, except we use the

eigenstates of the field operator φ̂(x) instead of the position operator x̂ and eigenstates of

the canonically conjugate momentum operator π̂(x) instead of the momentum operator p̂.

Using these complete sets of states we can repeat the derivation from quantum mechanics

and land on

Z0(J) ≡ 〈0|0〉J =

∫
Dφ(x, t) ei

∫
d4x[L0+Jφ] . (9.11)

We have again used the slightly complexified time contour t → (1 − iε)t with t ∈ (−∞,∞)
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to project to the vacuum, but we will leave this implicit.19 Notice that the measure is now

Dφ(x, t), meaning we discretize space and time. We will often just write this as Dφ. The

“path integral” is a “path” in the space of field configurations: at some moment in time we

have some crazy wiggly field configuration, at the next some other crazy one (not necessarily

related to the first by classical evolution), etc. The natural generalization of our Gaussian

path integral formula is

Z0(J) = exp

[
i

2

∫
d4k

(2π)4
J̃(k)J̃(−k)

k2 +m2 − iε

]
. (9.12)

Let’s see how we get this. We can evaluate it in exactly the same way as the harmonic

oscillator. We Fourier transform

φ(x) =

∫
d4k

(2π)4
eikxφ̃(k) (9.13)

where kx = kµx
µ = −k0t+ k · x. We use this to write S0 =

∫
d4x (L0 + Jφ) as

S0 =
1

2

∫
d4k

(2π)4

[
−φ̃(k)(k2 +m2)φ̃(−k) + J̃(k)φ̃(−k) + J̃(−k)φ̃(k)

]
. (9.14)

We again complete the square by a change of variable

χ̃(k) = φ̃(k)− J̃(k)

k2 +m2
. (9.15)

The measure remains unchanged, Dφ = Dχ, and the action becomes

S0 =
1

2

∫
d4k

(2π)4

[
J̃(k)J̃(−k)

k2 +m2
− χ̃(k)(k2 +m2)χ̃(−k)

]
. (9.16)

As in the harmonic oscillator, the path integral over the second term in S0 is simply Z0(0) =

〈0|0〉J=0 = 1. This is a choice of normalization of measure so that we get unit-norm eigen-

states. Then we reproduce (9.12):

Z0(J) = exp

[
i

2

∫
d4k

(2π)4
J̃(k)J̃(−k)

k2 +m2 − iε

]
(9.17)

19In QFT texts a lot of stuff is left implicit. So whenever you see a path integral, you should ask yourself
what the (implicit) boundary conditions are and what you’re integrating over – if you stop to think about it
it’s usually clear, but if you don’t you’ll sink fast.
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= exp

[
i

2

∫
d4x d4x′ J(x)G(x− x′)J(x′)

]
, (9.18)

where we defined the Feynman propagator

G(x− x′) =

∫
d4k

(2π)4
eik(x−x

′)

k2 +m2 − iε
. (9.19)

The Feyman propagator is a Green’s function for the Klein-Gordon equation

(−∂2x +m2)G(x− x′) = δ4(x− x′) . (9.20)

Evaluating (9.19) with the residue theorem gives

G(x− x′) = i

∫
d3k

(2π)32ω
eik·(x−x

′)−iω|t−t′| (9.21)

= iθ(t− t′)
∫

d3k

(2π)32ω
eik(x−x

′) + iθ(t′ − t)
∫

d3k

(2π)32ω
e−ik(x−x

′) (9.22)

We can compute correlators by taking variational derivatives of Z0(J):

〈0|T [φ(x1) · · · ]|0〉 =
1

i

δ

δJ(x1)
· · ·Z0(J)

∣∣∣
J=0

. (9.23)

By using the explicit formula (9.18), we get

Wick’s theorem: 〈0|T [φ(x1) · · ·φ(x2n)]|0〉 =
1

in

∑
pairings

Gi1i2 · · ·Gi2n−1i2n , (9.24)

where Gij ≡ G(xi − xj). The correlator of an odd number of fields vanishes. For example,

for the four-point function we have, via Wick’s theorem,

〈0|T [φ(x1)φ(x2)φ(x2)φ(x4)]|0〉 = G(x1 − x2)G(x3 − x4) +G(x1 − x3)G(x2 − x4) (9.25)

+G(x1 − x4)G(x2 − x3) . (9.26)

This is represented in terms of Feynman diagrams, which we will turn to next, as follows:
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Notice there are no loop diagrams since the theory is free (see the discussion at the end

of Appendix C). We will interpret the diagrams as follows. Particles are created at two

spacetime points, and they each propagate to one of the other two spacetime points where

they are annihilated. There are three ways this can occur and the total amplitude is the sum

of all three possibilities.
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10 Path integral for interacting field theory: part 1

10.1 Feynman diagrams

You may know that much of quantum field theory is concerned with calculating Feynman

diagrams. Problems in quantum mechanics can be treated similarly, and with our path

integral introduced we can explain what the Feynman diagrams are doing. They are just

calculating the (path) integrals introduced above! Say we introduced an anharmonic term

into the Hamiltonian for the harmonic oscillator,

H =
p2

2
+
ω2

2
q2 +

λ

4!
q4 − fq . (10.1)

We can write down the Lagrangian path integral∫
Dq exp

[
i

∫ ∞
−∞

dt

(
q̇2

2
− ω2

2
q2 − λ

4!
q4 + fq

)]
(10.2)

This is not exactly calculable since it is no longer Gaussian. Even the classical equation of

motion,

q̈ = f − ω2q − λ

3!
q3 , (10.3)

obtained by approximating the path integral by saddle point, does not have a simple solution.

We can, however, solve the classical equation of motion order-by-order in λ, and encapsulate

the contribution at each order in λ by “tree-level” (i.e. classical) Feynman diagrams, which

by definition don’t have any loops, as discussed in field theory toward the end of Appendix

C.

The full quantum-mechanical problem requires doing the path integral exactly, not just

by saddle point. We can do this integral perturbatively in λ by expanding the exponential

into a series in λ and doing these simpler integrals. The Feynman diagrams are just capturing

these integrals! How does this differ from the Feynman diagrams of the process above, which

calculates the solution to the classical equation of motion? As discussed in Appendix C, we

simply allow lines in Feynman diagrams that close in on themselves when we want to do the

full quantum problem.

Example 1: We can illustrate the remarks about Feynman diagrams in an even simpler model,
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an ordinary integral. Let’s calculate

Z =

∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4+Jq . (10.4)

We are calling it Z to conform to notation that will appear later. For λ = 0 this is a Gaussian

integral we can do as in Appendix D. For λ 6= 0 we expand the anharmonic term to get

Z =

∫ ∞
−∞

dq e−
1
2
ω2q2+Jq

[
1− λ

4!
q4 +

1

2

(
λ

4!

)2

q8 + · · ·

]
. (10.5)

We can now integrate each of these terms separately. For example, we can compute the term

of order q4n by writing it as

1

n!

(
− λ

4!

)n( d

dJ

)4n ∫ ∞
−∞

dq e−
1
2
ω2q2+Jq . (10.6)

This is just derivatives of a Gaussian integral, so we can do it! We are not assured, however,

that getting the general-n formula will give us a series that we can then sum to get the full

answer. We can, however, write the full answer as

Z = exp

[
− λ

4!

(
d

dJ

)4
]∫ ∞
−∞

dq e−
1
2
ω2q2+Jq =

√
2π

ω
exp

[
− λ

4!

(
d

dJ

)4
]

exp

[
J2

2ω2

]
(10.7)

Calculating to O(λn) just requires expanding the exponential on the left to that order and

taking the appropriate derivatives. It will be helpful for our future analysis to also expand

the exp
[
J2

2ω2

]
term. So we think of Z = Z(λ, J) and compute to a particular order in λ and J .

As an example, let’s calculate the term of order λ and J4. This requires expanding the

left exponential to order λ, and therefore the right exponential to order J8:

− λ
4!

(
d

dJ

)4
[

1

4!

(
J2

2ω2

)4
]

= − 8!

(4!)3(2ω2)4
λJ4 , (10.8)

where we ignored the prefactor of
√

2π/ω. For reasons that will soon become apparent, we

can associate a set of Feynman diagrams to any term of order λm and J4n. The rules are

� the diagrams are made of lines and vertices at which four lines meet (four is special

since we had the term ∼ λq4)

� for each vertex we assign a factor of (−λ)
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� for each line we assign a factor of 1/ω2

� for each external end assign a factor of J

Notice that unlike the rules for the Feynman diagrams for the nonlinear differential equation

from Appendix C, here all lines have to either end in a “source” J or loop back on themselves.

If we just accept these rules, then we can draw the following three diagrams for the term of

order λ and J4 we just calculated:

The term of order λ2 and J6 is

1

2!

(
− λ

4!

)2( d

dJ

)8
[

1

7!

(
J2

2ω2

)7
]

=
14!

(4!)26!7!2(2ω2)7
(−λ)2J6 (10.9)

The diagrams we can draw are
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The term of order λ2 and J4 is

1

2!

(
− λ

4!

)2( d

dJ

)8
[

1

6!

(
J2

2ω2

)6
]

=
12!

(4!)33!(2ω2)6
(−λ)2J4 (10.10)

with diagrams

Finally let’s calculate the term of order λ and J0:

− λ
4!

(
d

dJ

)4
[

1

2!

(
J2

2ω2

)2
]

=
1

2!(2ω2)2
(−λ) (10.11)

and has just one diagram

Notice in each case, there are two distinct sorts of diagrams: ones with loops and ones with-

out. These are called loop diagrams and tree-level diagrams, respectively. Notice that the

term of order λ2J4 is all loop diagrams. Given the comments after (10.3), this

must mean that if you evaluate the integral by saddle point and expand for small

λ, J , there will be no term of order λ2J4. Check this! The terms of order λJ4 and

λ2J6 each have one tree-level diagram, diagram (a), and a term of this order indeed appears
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in the saddle-point approximation to the integral.

Another way to calculate diagrams is to expand Z in a series in J first:

Z(J, λ) =
∞∑
n=0

1

n!
Jn
∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4
qn ..= Z(0, 0)

∞∑
n=0

1

n!
JnG(n) , (10.12)

where the coefficients G(n) are predecessors of the Green’s functions we have seen already

(and will see again in the field theory context). Now each G(n) can be expanded in a series

in λ.

One more way we can write the middle expression in (10.12) is

Z(J, λ) =

∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4

+
∞∑
n=1

1

n!
Jn
∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4
qn (10.13)

= Z(J = 0, λ) +

∞∑
n=1

1

n!
Jn
∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4
qn (10.14)

= Z(J = 0, λ)

(
1 + Z(J = 0, λ)−1

∞∑
n=1

1

n!
Jn
∫ ∞
−∞

dq e−
1
2
ω2q2− λ

4!
q4
qn

)
(10.15)

..= Z(J = 0, λ)

∞∑
N=0

1

N !
W (J, λ)N = Z(J = 0, λ) eW (J,λ) (10.16)

This will prove useful to distinguish two types of diagrams we can see in the above drawings:

connected vs disconnected diagrams. Diagrams (a) at order λJ4, λ2J6, and λ2J4 are all

connected diagrams (we cannot split them into more than one piece without cutting a line),

whereas diagrams (c) at those orders are disconnected. In the above representation of the

integral, we will see that W (J, λ) is a sum of connected diagrams only, whereas Z(J, λ) sums

disconnected and connected pieces. There is a close relation to statistical mechanics, where

the Z and W are related to one another just like the partition function and free energy are

related.

The example above used Feynman diagrams to evaluate Z(J, λ) order by order. In quantum

field theory we will have the generating functional Z(J(x), λ), and it encodes the correlation

functions through derivatives with respect to the source J(x) as we’ve seen. Once we have

the rules for computing Z(J(x), λ) in perturbation theory, it is relatively straightforward to
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write down the rules for computing the correlation functions.

Let’s construct the Feynman diagrams for an interacting field theory. We will consider

the following path integral:

Z(J) =

∫
Dφe

i
∫
d4x

(
− 1

2
∂µφ∂µφ−m

2

2
φ2+ λ

3!
φ3+Jφ

)
(10.17)

We already calculated the answer for the free theory, λ = 0, in (9.18):

Z0(J) =

∫
DφeiS0 = exp

[
i

2

∫
d4x d4x′ J(x)G(x− x′)J(x′)

]
. (10.18)

Just like in (8.38) where we introduced interactions in quantum mechanics, we can decompose

this path integral as

Z(J) =

∫
Dφei

∫
d4x λ

3!
φ3
eiS0 = e

iλ
3!

∫
d4x

(
1
i

δ
δJ(x)

)3 ∫
DφeiS0 ∝ e

iλ
3!

∫
d4x

(
1
i

δ
δJ(x)

)3

Z0(J) ,(10.19)

with Z0(J) given by the RHS of (10.18). The proportionality constant appears because the iε

prescription projects us to something proportional to the ground state, and this proportion-

ality constant is usually absorbed into the path integral measure. This is what happened in

the harmonic oscillator and the free scalar, and it led to Z0(0) = 1. Since we want Z(0) = 1

in the interacting theory, we are going to have to pick a different measure, and with this

measure we have
∫
DφeiS0 ∝ exp

[
i
2

∫
d4xd4x′ J(x)G(x− x′)J(x′)

]
. We will soon choose

this proportionality constant so that Z(0) = 1.

By expanding the two exponentials, we can calculate Z(J) to any order in J , λ. If we

want to eventually compute an n-point function, then we need Z(J) to order Jn, so that

when we take n functional derivatives with respect to J and set J = 0 we get a nonvanishing

answer. If we want to calculate to order λm, then we need to expand the first exponential

in the path integral to order m, which means we will have 3m J derivatives, so we need

to expand Z0(J) to order Jn+3m ..= J2P so that at the end Z(J) is of order Jn. We have

introduced the parameter P which will count the number of propagators in a diagram. The

parameter m ..= V counts the number of vertices. ( [1] also defines n ..= E, for external, since

these sources will sit at the edges of Feynman diagrams.) Using these parameters we can

write our path integral as

Z(J) ∝
∞∑
V=0

1

V !

[
iλ

3!

∫
d4x

(
1

i

δ

δJ(x)

)3
]V ∞∑

P=0

1

P !

[
i

2

∫
d4x d4x′ J(x)G(x− x′)J(x′)

]P
. (10.20)
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The 3V sources can act on the 2P sources in many different ways, in particular (2P )!/(2P −
3V )! different ways. Many of these give the same mathematical expression, but the distinct

ones are captured by distinct-looking Feynman diagrams.

Example 2: To see how this works let’s calculate a few cases. First we consider the term of

order λ2 J0, which is the m = 2, n = 0 case of the above. This means we need to expand

Z0(J) to order J6 and the exponential that acts on it to order λ2:

Z(J) ⊃

(
iλ

3!

∫
d4x

(
1

i

δ

δJ(x)

)3
)2

1

3!

(
i

2

∫
d4x d4x′ J(x)G(x− x′)J(x′)

)3

(10.21)

=
−iλ2

(3!)323

∫
d4x1 · · · d4x8

(
δ

δJ1

)3( δ

δJ2

)3

J3G34J4J5G56J6J7G78J8 , (10.22)

where we introduced Ji ..= J(xi) and Gij ..= G(xi − xj). Depending on which J ’s the func-

tional derivatives act on, we will get different structures. For example, consider all three

J1-derivatives acting on J3, J4, J5, and the J2 derivatives acting on the rest. This will give

a term proportional to
∫
d4x1 d

4x2G11G12G22. Consider instead that the J1 derivatives act

on J3, J5, J7, and the J2 derivatives acting on the rest. This will instead give a term pro-

portional to
∫
d4x d4x2G

3
12. These correspond to (a) and (b) below, respectively.

The three-point vertices correspond to spacetime points x1 and x2, which need to be in-

tegrated over. Notice that the loops in the left diagram correspond to G11, which begins and

ends at x1, and similarly G22. These objects are divergent, since

G(x− x) = G(0) =

∫
d4k

(2π)4
1

k2 +m2 − iε
, (10.23)

where we lost the eik(x−y) phase to close the contour at ±i∞ as we usually do. And without

the phase we can see that this integral should diverge at large k. We will postpone dealing

with these infinities: it is the topic of renormalization which we will shortly come to. For

now we will compute some other diagrams to just see how they work.
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Let’s consider the term of λ2J2, which is m = 2, n = 2. That means we need to expand

Z0(J) to order J8 and the exponential that acts on it to order λ2:

Z(J) ⊃

(
iλ

3!

∫
d4x

(
1

i

δ

δJ(x)

)3
)2

1

4!

(
i

2

∫
d4x d4x′ J(x)G(x− x′)J(x′)

)4

(10.24)

=
λ2

(3!)24!24

∫
d4x1 · · · d4x10

(
δ

δJ1

)3( δ

δJ2

)3

J3G34J4 · · · J9G9,10J10 , (10.25)

We can have the following structures. Notice that this is schematically the same as the pre-

vious calculation except for the additional J9G9,10J10. So the 6 J derivatives can act on J3

through J8 in the two ways as before, resulting in
∫
d4x1 d

4x2 d
4x9 d

4x10G11G12G22J9G9,10J10

and
∫
d4x1 d

4x2 d
4x9 d

4x10G
3
12J9G9,10J10. This gives diagrams (a) and (b) below. We can

also have the derivatives act to get
∫
d4x1 d

4x2 d
4x3 d

4x4 J1G12J4G34G
2
23, represented by di-

agram (c) below, and
∫
d4x1 d

4x2 d
4x3 d

4x4 J1J2G
2
13G23G34G44, represented by diagram (d)

below.

For more examples, see Figures 9.1 - 9.11 of [1].

Z(J) at order λ2J2 can be used to compute the O(λ2) correction to the 2-point function

(which at O(λ0) is given just by the free field answer) by taking two functional J derivatives.

But notice some of the terms have this singular G11, like diagram (d), which corresponds

to a loop in the diagram. These led to divergences, but it’s not just these pure loops that

cause divergences. For example diagram (c) has a G2
ij in it, which also causes divergences.

So we see that these quantum corrections (which always correspond to loops) cause infinities

to appear in our calculations.
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In the example above, there were many more ways we could have acted with the deriva-

tives to give the same diagrams. Let’s count the possible ways for a general λV JE diagram.

First notice that at O(λV ), we have (
∫
d4x(δ/δJ(x))3)V and that we will have V vertices. We

can rearrange the three δ/δJ factors on each vertex without changing anything; this gives a

degeneracy factor of (3!)V . But we can also exchange vertices without changing anything,

i.e. swapping any (δ/δJ)3 cluster with any other (δ/δJ)3 cluster. This gives a factor of V !.

The sources at the ends of propagators can also be interchanged: for example, if we have a

G12 resulting from acting with (δ/δJ1)(δ/δJ2) on
∫
d4x3d

4x4J3G34J4, then flipping J3 and

J4 gives G21, flipping the propagator. This makes no difference in the final answer due to

the symmetry of the Feynman propagator. This factor of 2 is there even if the propagator

ends at an external source: the single derivative can act on either J . This gives a degeneracy

factor of 2P since there are P propagators. Finally, pairs of sources linked up by a propa-

gator can be interchanged with other pairs of sources linked up by a propagator, giving an

additional factor of P !. Altogether this gives a factor of V !(3!)V P !2P which precisely cancels

the prefactor in the term of order λV J2P in (10.20)!

The issue, however, is that some of these exchanges we discussed are degenerate with

one another and lead to the same pairing of derivatives with sources. So this overcounts the

number of terms that give the same results. This is the subject of symmetry factors. To

understand this, look back at (10.20). One series is a bunch of δ/δJ ’s, and the other series is

a bunch of J ’s. Each δ/δJ is trying to find a soulmate in one of the J ’s. Turns out any J will

do. The factors we just counted have to do with swapping δ/δJ ’s ((3!)V and V ! factors above)

or swapping J ’s (the 2P and P ! factors above), to produce distinct pairings of δ/δJ ’s with

J ’s. But sometimes it will be the case that swapping δ/δJ ’s is undone by swapping J ’s! This

does not produce a distinct pairing, so multiplying the ways of swapping J derivatives with

the ways of swapping J ’s is an overcounting. We therefore need to divide by an appropriate

symmetry factor to account for this. We will often refer to swapping sources linked up by

a propagator as reversing the propagator, and interchanging pairs of sourced linked up by a

propagator with other pairs of sources linked up by a propagator as exchanging propagators.

Let’s compute the symmetry factor for diagram (a) at order λ2J0 above. While this

diagram represents what happens when the derivatives have already acted, it helps to recall

the status before the derivatives act, as discussed in the paragraph above. I will therefore

refer to each propagator as ending at sources. In diagram (a) each vertex has a pure bubble

attached, where by pure bubble I mean a propagator that begins and ends at the same point.

Exchanging the sources of this propagator is equivalent to exchanging the appropriate pair
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of δ/δJ derivatives at the vertex; this gives a symmetry factor of 2 for each pure bubble.

Furthermore, we can exchange the sources of the middle propagator, thereby reversing the

propagator, but this is the same as exchanging a δ/δJ from the cluster at one vertex with a

δ/δJ from the cluster at another vertex. This is another factor of 2, giving a total symmetry

factor of 23. Diagram (b) has a symmetry factor of 2 × 3!: the 2 is from the equivalence

between exchanging all the δ/δJ derivatives at one vertex with all the δ/δJ derivatives at the

other vertex and reversing all three propagators. The factor of 3! comes from any exchange

of the 3! possible exchanges of the three propagators being duplicated by a suitable exchange

of derivatives at each vertex.

Notice that some of the diagrams drawn above are disconnected, e.g. (a) and (b) of

the λ2J2 term. Disconnected means what you’d guess – you can separate out subdiagrams

by drawing a line between them (that does not intersect the diagram). We can represent

the contributions to a general diagram D in terms of its connected subdiagrams CI , i.e.

subdiagrams that cannot be further divided in the way stated above. The set of all connected

diagrams is countable and so I indexes the nonnegative integers. We have

D{nI} =
1

SD

∞∏
I=1

(CI)
nI . (10.26)

The integer nI counts the number of CI ’s in D{nI}, and SD is an additional symmetry factor

for the full diagram D{ni}. This symmetry factor has to do with symmetries between CI ’s;

the symmetry of any given connected diagram is already included in CI . This new symmetry

factor is just SD =
∏∞
I=1 nI !. The nI ! is from the permutations of the nI equivalent diagrams

CI , and the product simply counts all different equivalence classes. Our partition function

sums over all possible diagrams D{ni}, which can be written as a sum over all possible strings

of nonnegative integers {nI}

Z(J) ∝
∑
{nI}

D{nI} =
∑
{nI}

∞∏
I=1

1

nI !
(CI)

nI =

∞∏
I=1

∞∑
nI=0

1

nI !
(CI)

nI = exp

(∑
I

CI

)
(10.27)

The switch of the sum with the product is a bit tricky. To convince yourself, pick a few terms

you expect to be in the sum of all possible diagrams, and show that it is reproduced in the

form where the product comes before the sum. Another consistency check that assures all

the diagrams are there (checking the numerical factor requires a bit more work) is to notice

that
∏∞
I=1

∑∞
nI=0

1
nI !

(CI)
nI contains all possible strings Cn1

1 Cn2
2 · · · . So we see that if we

want Z(0) = 1, we can simply leave out the vacuum diagrams, i.e. those with no sources
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J .20 With this normalization we can write

Z(J) = exp [iW (J)] = exp

 ∑
I 6={0}

CI

 , (10.28)

where the notation I 6= {0} means we leave out the vacuum diagrams from the sum and so

W (0) = 0.

Now that we understand how to construct these diagrams from the equations, we can

simply write down the Feynman rules to draw pictures and read off the corresponding equa-

tions. We will do this for the position-space time-ordered correlation functions. These are

obtained by functional derivatives of Z(J), after which we set J = 0. For example, to

compute 〈T [φ(x)φ(y)]〉 to order λn we simply take our calculation of Z(J) to order λn and

calculate (1/i)δ/δJ(x)(1/i)δ/δJ(y)Z(J)
∣∣∣
J=0

. All this does is convert the external sources

into operators φ(x) and φ(y) at fixed spacetime points (i.e. not to be integrated over). If

we look at (10.20), this means that every iJGJ term will have both sources paired with

(1/i)δ/δJ terms, so every propagator will contribute a −iG. Vertices contribute iλ
∫
d4z,

while external points don’t contribute anything (since we already accounted for the −i due

to conversion from source to operator insertion in our analysis of the propagators). The

Feynman rules are therefore as follows:

————————————————————————————————————————–

L = −1
2∂µφ∂

µφ− m2

2 φ
2 + λ

3!φ
3: position-space Feynman rules for time-ordered correlators

� For each propagator = −iG(x− y),

� For each vertex = iλ
∫
d4z

20Without elaboration, it seems like a lucky coincidence that leaving out diagrams gives us the normalization
we want. After all, why is it justified to ignore diagrams? The idea is that the free theory vacuum |0〉free

gets upgraded to the interacting theory vacuum |0〉interacting through a summation of all of these vacuum
diagrams! They are interpreted as a renormalization of the vacuum. So we are not ignoring these diagrams,
they are already included when considering |0〉interacting, so we do not need to include them again. This is
consistent with the fact that this prescription gives Z(0) = interacting〈0|0〉interacting = 1, i.e. the interacting
vacuum should have unit norm like all states.
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� For each external point = 1

� Divide by the symmetry factor

� Sum up all fully connected diagrams

————————————————————————————————————————–

That’s it! We can use these rules to calculate, for example, the λ2 correction to the two-

point function 〈T [φ(x)φ(y)]〉. The diagrams are precisely (a) - (d) in the λ2J2 calculation

of Example 2, except now the external sources are fixed operator insertions φ(x)φ(y). Using

our Feynman rules, diagram (c) is equal to

−λ
2

4

∫
d4wd4zG(x− w)G(w − z)2G(z − y) (10.29)

Path integrals and probability theory

Let’s pursue our analogy between path integrals and probability theory. We already saw that

Z is the generating functional of correlation functions, in analogy to the moment-generating

function in (8.27). Recall the moment-generating function Z(s) computes the moments

〈xn〉 = (d/ds)nZ(s)|s=0. Now we have this object W = −i logZ. In probability theory, the

logarithm of the moment-generating function is the cumulant-generating function. These

cumulants are not just 〈xn〉, but instead they add or subtract “disconnected” pieces that can

be written as products of expectation values 〈xa1〉b1 · · · 〈xam〉bm with a1b1 + · · ·+ ambm = n.

10.2 Infinities and renormalization

As we saw above for calculations of Z(J), if we use these Feynman rules to calculate corre-

lation functions, we will see infinities all over the place. This is inevitable when we treat an

interacting QFT in perturbation theory: you find that e.g. the O(λ2) correction to 〈φ(x)φ(y)〉
in the theory in the theory L = −1

2∂µφ∂
µφ − 1

2m
2φ2 + 1

3!λφ
3 is divergent. This is BAD. A

perturbative correction should be small, not big, let alone infinite! This happens in all sorts

of quantum field theory calculations: corrections to atomic energy levels, particle masses,

and more. It was a major problem in the historical development of QFT.

The basic resolution is that we are focusing on a quantity that isn’t measurable. All

measurable quantities will actually come out finite. But calculationally it will be simpler to

still compute non-measurable infinite quantities, but to regulate them in a certain way. Then

at the end when we put the pieces together to get the answer for a measurable quantity, the

regulator will drop out of the answer.
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As an example of this philosophy, let’s consider the Casimir effect. We start with the

Hamiltonian for a free scalar field, which we repeat here:

H =

∫
d3k

(2π)32ωk
ωka

†(k)a(k) +
1

2
(2π)−3

∫
d3k ωkV (10.30)

where V is the volume of space. In this case we do not (yet) allow ourselves the constant

shift Ω0 from before. The vacuum energy is therefore

E = 〈0|H|0〉 = V

∫
d3k

(2π)3
ωk

2
=

V

4π2

∫
k3dk =∞ . (10.31)

The vacuum seems to have infinite energy! But we know that the vacuum energy is not

observable: it is only differences in energy that are meaningful (as you may be familiar with

from the notion of potential energy).

Let’s set up a calculation where differences in this infinite vacuum energy are calculable

and finite. This is due to Casimir. Consider the theory in one spatial dimension, in a finite-

sized box of size a. If the energy depends on a, then there will be a force on the walls of the

box due to F = −dE/da. But we need to calculate the energy delicately, since it is infinite:

E(a) =
∞∑
n=1

ωn
2

=
π

2a

∞∑
n=1

n (10.32)

where the frequencies are discrete ωn = πn/a since we are in a box with boundary conditions

requiring the field to vanish at the endpoints. This sum is clearly infinite, as is its derivative

−dE/da. We regulate it with a “heat kernel regulator”:

E(a) =
π

2a

∞∑
n=1

ne−
n

Λa =
π

2a

∞∑
n=1

ne−εn (10.33)

The regulator Λ makes sure that frequencies ωn � Λ are exponentially suppressed in the

sum. We defined ε = (Λa)−1 to simplify calculation:

∞∑
n=1

ne−εn = −∂ε
∞∑
n=1

e−εn = −∂ε
1

eε − 1
=

e−ε

(1− e−ε)2
=

1

ε2
− 1

12
+

ε2

240
+ · · · . (10.34)

Thus the energy becomes

E(a) =
πa

2
Λ2 − π

24a
+ · · · , (10.35)
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The full energy, however, is a contribution from inside the box of size a and from outside the

box. The outside is infinite, but let’s just say it has size L which we will take to infinity at

the end. Then the total energy is

Etot(a) = E(a) + E(L− a) =
πL

2
Λ2 − π

24

(
1

L− a
+

1

a

)
(10.36)

and the force is

F (a) = −dEtot
da

=
π

24

(
1

(L− a)2
− 1

a2

)
+ · · · . (10.37)

Taking the limit L→∞ and restoring units gives us a force

F (a) = − π~c
24a2

. (10.38)

Notice it is a purely quantum-mechanical effect, being proportional to ~.

10.2.1 Regulator independence

This was just one way of doing the calculation, which amounted to
∑∞

n=1 n = 1+2+3+ · · · =
− 1

12 . That seems crazy! But in fact, this force has been measured (in the case of the

electromagnetic field), and it is in precise agreement with this prediction. The substitution

1 + 2 + 3 + · · · = − 1
12 is also behind the claim that superstring theory lives in 10 dimensions.

But how do we know that other ways of regulating the sum won’t give you different answers?

Well, this particular case is very well-studied. Many other regulators give you the same

answer, e.g.

E(a) =
1

2

∑
n

ωnθ(πΛ− ωn) (hard cutoff) (10.39)

E(a) =
1

2

∑
n

ωne
−(ωn

πΛ
)2 (Gaussian) (10.40)

E(a) =
1

2

∑
n

ωn

(
ωn
µ

)−s
(ζ-function) (10.41)

In fact one can argue that a wide class of regulators should give you the same answer, as

indeed Casimir did in his original paper (see Section 15.3 of [4] for more).

But why does this work, physically? The basic idea is that we are calculating something

that is an infrared effect, i.e. it does not depend on the very high-energy modes in the

system. This is often the case we will be in, and the reasoning may be somewhat different
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in various cases, but let’s think about the physical setup here. In the lab, one would set up

electromagnetic waves in a box, and the discrete frequencies would be due to the boundary

conditions of the electromagnetic field at the walls of the box. But a box is made of atoms,

and the discretization will be due to the interaction of the electromagnetic waves and the

atoms of the box. But if we go to sufficiently high frequency the electromagnetic waves won’t

interact with the atoms and won’t be discretized according to the above. They won’t even

see the box! So these should not really be entering our sum. Thus, any sane regulator which

eliminates the high-frequency modes will give the same answer. Because it is an infrared

effect, we are usually safe with any regulator that doesn’t mess with the infrared too much

(even if it is violent in the ultraviolet).

In quantum field theory this will keep happening: very high frequency modes will lead

to divergences that need to be removed. The way we will do them is through introduction

of “counterterms,” which are unobservable, infinite terms we can add to the Lagrangian to

cancel against other infinities which appear in intermediate steps. For example, in this case

we can recall our old friend Ω0, which we added to the Lagrangian in (5.1) for exactly this

reason! How we pick counterterms depends on the regulator chosen. For example, for the 1d

free scalar with heat kernel regulator just treated we would pick

Ω0 = −π
2

Λ2 , (10.42)

which when integrated against space gives an energy −πΛ2/(2a) which cancels the infinite

contribution to the energy +πΛ2/(2a).

10.2.2 Lattice regulator

A natural way to regulate any infinity from quantum field theory is by discretizing space,

i.e. turning three-dimensional space into a lattice of N ×N ×N points. This will turn the

QFT into N3 harmonic oscillators living at each lattice point, coupled through the kinetic

term. (For gauge theories the story is a little more complicated.) Notice that the infrared is

insensitive to the existence of a lattice: for example, space in our world can be discretized

on a very tiny scale and we wouldn’t be able to tell by doing infrared experiments. So this is

again something that messes with the ultraviolet. Now the vacuum energy is clearly finite,

since there are a finite number of interacting quantum-mechanical systems. A way to see

this explicitly is that since we discretized space, the frequencies are going to be in a finite

range. This is because high frequencies that would have many oscillations between lattice

points are meaningless, since the lattice can’t see those oscillations! This discretization of

space leading to a finite frequency range is the “inverse” of the fact that when we put space
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in a finite range the frequencies became discretized. Mathematically, our field φ(x) becomes,

in 1 space dimension, N values φj , j = 0, . . . , N − 1. This is connected to frequency space

by a discrete Fourier transform,

φj =

N−1∑
n=0

φne
2πin
N

j , (10.43)

so we see that the frequencies now have a maximum. While a lattice regulator is conceptually

beautiful, and helps organize one’s thinking, it is often not very practical. To see how to get

the right Casimir energy out of this regulator, see Section 15.2 of [4] – it’s a lot more painful

than the heat kernel regulator we used above.

10.3 Returning to correlators

The Casimir energy discussion above was a digressive analogy to the pesky infinities that

appear due to loops in Feynman diagrams. We learned in this analogy that we should always

speak in terms of physically measurable quantities (like the change in energy or force on the

walls of the box). A calculationally helpful tool was to introduce some sort of regulator.

The final answer could then be expressed in terms of a divergent piece, a finite piece, and a

vanishing piece. The divergent piece diverges as we take the regulator away (Λ→∞ in our

example), the finite piece is independent of Λ, and the vanishing piece goes to zero as Λ→∞.

We saw that we could introduce a counterterm to cancel the divergent piece, which let us

work with pleasantly finite quantities everywhere. In our analysis of Feynman diagrams,

we saw that the momentum integrals led to infinities. Thus we will want to regulate the

very high momentum modes. Our final answer will have divergent pieces, and we will need

counterterms to make sure we get finite answers.

Let’s return to our φ3 theory

L = −1

2
∂µφ∂

µφ− m2

2
φ2 +

λ

3!
φ3 . (10.44)

The couplings in any physical theory should correspond to things we measure. For example

Newton’s constant is determined by measuring gravitational attraction. Similarly, the cou-

plings in the above Lagrangian should be finite quantities corresponding to something measur-

able. Time-ordered correlation functions are measurable, so a natural guess is that λ0 corre-

sponds to the proportionality constant in the three-point function 〈0|T [φ0(x1)φ0(x2)φ0(x3)]|0〉.
The problem is that the three-point function is only proportional to λ0 if we work at tree level

or in the semiclassical approximation. Once we draw loop diagrams, there are corrections.
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We will have something like

〈0|T [φ(x1)φ(x2)φ(x3)]|0〉 = λ(· · · ) + λ3(· · · ) + . . . . (10.45)

We can define a renormalized coupling λr to equal the value of the three-point function at a

particular set of spacetime points xi. This correlator is finite, and so λr will be finite. We will

see that λr is some infinite series in terms of λ and that λ is actually infinite (more precisely,

once we introduce a regulator, λ will depend on the regulator in a way that diverges as we take

the regulator away)! So it is a pretty crummy parameter to stick into a Lagrangian. Working

in this way, in terms of physical parameters defined by some experimental conditions, actually

leads us to replace the Lagrangian (10.44) with

L = −1

2
∂µφr∂

µφr −
m2
r

2
φ2r +

λr
3!
φ3r −

δZ
2
∂µφr∂

µφr −
1

2
δmφ

2
r +

δλ
3!
φ3r + Y φr , (10.46)

with the three δi’s, Y , mr, and λr determined by the normalization of our field and various

experimental conditions, e.g. such-and-such correlator at such-and-such spacetime points

behaves like such-and-such. For example, one of the conditions we will require is 〈0|φr(x)|0〉 =

0, which may require a constant shift in our field (to subtract off whatever existing one-point

function there is), which is why we have the Y φr term in the Lagrangian above. Sometimes

authors use Zi ..= 1 + δi, e.g. Zm = 1 + δm (for the field renormalization the notation is

instead Zφ = 1 + δZ); this is the notation [1] sticks to, although at the end of Chapter 9 he

also defines A = Zφ − 1, B = Zm − 1. A and B are simply our δZ and δm/m
2.

While this looks different than our Lagrangian (10.44), notice that it just corresponds to a

bunch of redefinitions, e.g. φ = φr
√
Zφ+const. = φr

√
1 + δZ+const., λ(1+δZ)3/2 = λr+δλ,

etc. So we see that counterterms are not ad-hoc things we add to our Lagrangian solely

to cancel infinities. Instead, we simply split up the “bare” parameters m0 and λ0 into

renormalized parameters mr and φr (and shift and “renormalize” our bare field φ to φr), and

what we are left with are the counterterms. Of course, we will need to be careful to choose

the δi’s so that we are sure that we maintain our experimental definitions of the renormalized

couplings mr, λr. We can treat these counterterms just as in (10.20): we simply trade φr for

−iδ/δJ to write these counterterms as functional differential operators acting on Z0(J). We

will see this in more detail soon.

To study this in more detail it helps to turn finally to studying scattering cross-sections.

These are the natural things seen at collider experiments, but they are also nice because

the amplitudes for S-matrices are field-redefinition-invariant. We need a formula that relates

correlation functions in position space, which is what we know how to calculate, to scattering
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cross-sections. This is the LSZ formula, which we now turn to.

11 LSZ formula

We want a formula for scattering amplitudes in a general interacting theory, something that

can tell us e.g. if we smash together two protons at very high energy, what is the probability

that a Higgs boson appears in the final state? Our discussion below will follow Chapter 5

of [1]. For a more detailed elaboration see Chapters 13.5 - 14.1 of [3] and references therein.

Recall our free field expression

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)eikx + a†(k)e−ikx

)
(11.1)

and our expression for the creation operator

a†(k) =

∫
d3x eikx(−i∂tφ(x) + ωkφ(x)) = −i

∫
d3x eikx

←→
∂t φ(x) , (11.2)

where f
←→
∂ g = f∂g− (∂f)g. In the free theory, we want to define an operator that creates a

particle localized in momentum space near k1 and in position space near the origin:

a†1 =

∫
d3k f1(k)a†(k) , f1(k) ∝ exp

(
−(k− k1)

2

4σ2

)
. (11.3)

This is a wave packet with width σ in momentum space. [1] calls this a time-independent op-

erator, but he means in the Schrödinger sense (it has the usual Heisenberg time-dependence).

We can create the state a†1a
†
2|0〉 and evolve in the Schrödinger picture to t = −∞. As long as

k1 6= k2, these wave packets will head in different directions as we rewind time and become

well-separated. This seems to provide a good “in” state, i.e. a state of two separated particles

that we want to crash together.

What about the interacting theory? In this case we define analogously

a†(k) = −i
∫
d3x eikx

←→
∂t φr(x) , a†1 =

∫
d3k f1(k)a†(k) , (11.4)

where they are now time-dependent, even as Schrödinger operators. The field φr is related

to the field in the Lagrangian φ in a way we now make precise. To keep the normalizations

similar to the free theory, we need to shift and rescale (or “renormalize”) our field φ. In the
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free theory we have

free theory: 〈0|φ(x)|0〉 = 0 , 〈k|φ(x)|0〉 = e−ikx (11.5)

where both expressions follow immediately from insertion of (11.1). In the interacting theory

we define our renormalized field φr so that

interacting theory: 〈0|φr(x)|0〉 = 0 , 〈k|φr(x)|0〉 = e−ikx . (11.6)

The vacuum |0〉 is the vacuum of the full interacting theory (in many texts this is denoted |Ω〉),
and |k〉 is a one-particle state with 4-momentum k in this theory, with k2 = −m2

ph where the

label ph stands for physical, since this corresponds to the physical mass of the particle. We

can assure these normalizations beginning with φ in the interacting theory as follows. Let’s

say there is a nonzero one-point function 〈0|φ(x)|0〉 = 〈0|e−iPxφ(0)eiPx|0〉 = 〈0|φ(0)|0〉 6= 0,

where we used Pµ|0〉 = 0 to obtain an x-independent one-point function. We can then define

a new field φ̃ with vanishing one-point function as φ̃(x) = φ(x) − 〈0|φ(0)|0〉. Furthermore,

we generally have

〈k|φ̃(x)|0〉 = 〈k|e−iPxφ̃(0)eiPx|0〉 = e−ikx〈k|φ̃(0)|0〉 = e−ikx
√
Z , (11.7)

where we defined the Lorentz-invariant quantity21 〈k|φ̃(0)|0〉 ≡
√
Z, the capital Z and square

root simply being a convention. So we can rescale φ̃ to obtain a renormalized field

φr(x) = Z−1/2φ̃(x) = Z−1/2 (φ(x)− 〈0|φ(0)|0〉) (11.8)

which satisfies (11.6). We will now assume that we can use a†i from (11.3),22 except now

written in terms of the renormalized field φr, to create an initial state of two particles as

|i〉 = lim
t→−∞

a†1(t)a
†
2(t)|0〉 . (11.9)

By an appropriate choice of normalization of f1 we can obtain 〈i|i〉 = 1, which we will assume.

Had we not used the renormalized field then we would just stick in a factor of Z−1.

21To see that this is Lorentz invariant, stick in Lorentz transformations U(Λ) as 〈k|φ̃(0)|0〉 =
〈k|U−1Uφ̃(0)U−1U |0〉 = 〈Λk|φ̃|0〉; the dependence on Λ must disappear, which means this should be a
function of k2, a Lorentz-invariant quantity.

22For an argument that multiparticle states created by a†i can be ignored in the limits t → ±∞; the basic
point is that these states have higher energy which leads to more suppression due to oscillatory phases, see
equations (5.19) - (5.23) of [1].
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We can also create a final state by acting with operators at t = +∞:

|f〉 = lim
t→+∞

a†1′a
†
2′ |0〉 . (11.10)

We could have put more (or fewer) particles in our final state. The amplitude we want is

〈f |i〉 = 〈0|T [a1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)]|0〉 , (11.11)

where we stuck in a time-ordering symbol, which we are allowed to do since everything is

already time-ordered.

We want to express this amplitude in terms of the field φr. We first derive an equation

relating a1(t = +∞) to a1(t = −∞):

a†1(+∞)− a†1(−∞) =

∫ ∞
−∞

dt ∂ta
†
1(t) (11.12)

= −i
∫
d3kf1(k)

∫
d4x ∂t

(
eikx
←→
∂t φr(x)

)
(11.13)

= −i
∫
d3kf1(k)

∫
d4x eikx(∂2t + ω2

k)φr(x) (11.14)

= −i
∫
d3kf1(k)

∫
d4x eikx(∂2t + k2 +m2

ph)φr(x) (11.15)

= −i
∫
d3kf1(k)

∫
d4x eikx(∂2t −

←−
∇2 +m2

ph)φr(x) (11.16)

= −i
∫
d3kf1(k)

∫
d4x eikx(∂2t −

−→
∇2 +m2

ph)φr(x) (11.17)

= −i
∫
d3kf1(k)

∫
d4x eikx(−∂2 +m2

ph)φr(x) (11.18)

(11.19)

The first equality is the FTC, the second substituted the definition of a†1 (11.3), and in the

second-to-last we used the fact that the wavepacket only has Gaussian support so does not

contribute boundary terms in the integration by parts. (To see this first perform the d3k

integral; the Fourier transform of a Gaussian is another Gaussian, so we obtain a Gaussian

in position space which gives us the falloff we need.)

Now if we were in the free scalar field theory, this last expression would be zero since

the field operator φr would obey the Klein-Gordon equation. This is consistent with the fact

that the field operator a†1 is time-independent, so the difference we are constructing should

vanish. But in an interacting theory it is nonzero, and the Klein-Gordon equation is not
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true. So we have the formula

a†1(−∞) = a†1(+∞) + i

∫
d3k f1(k)

∫
d4x eikx(−∂2 +m2

ph)φr(x) (11.20)

and its Hermitian conjugate

a1(+∞) = a1(−∞) + i

∫
d3k f1(k)

∫
d4x e−ikx(−∂2 +m2

ph)φr(x) . (11.21)

This is pretty sweet, because we can now plug these into (11.11) and use the time-ordering

symbol to move every a(−∞) to the right and annihilate the vacuum ket; we also move every

a†(+∞) to the left and annihilate the vacuum bra. We can also take σ → 0 and choose a

normalization such that f1(k) = δ(3)(k− k1). The full answer, generalizing to n in-particles

and n′ out-particles, becomes

〈f |i〉 = in+n
′
∫
d4x1e

ik1x1(−∂21 +m2
ph) · · · d4x′1e−ik

′
1x
′
1(−∂21′ +m2

ph) · · · 〈0|T [φr(x1) · · ·φr(x′1) · · · ]|0〉.(11.22)

We can get a bit more intuition for this by Fourier transforming to momentum space:

n∏
i=1

i

k2i +m2
ph

n′∏
i=1

i

k2i′ +m2
ph

〈f |i〉 = 〈0|φr(k1) · · ·φr(kn)φr(k1′) · · ·φr(kn′)|0〉 . (11.23)

The right-hand-side is understood to be the Fourier Transform of the time-ordered correlation

function. So if we want the transition amplitude 〈f |i〉, we Fourier transform the time-ordered

correlator and put the momenta close to their on-shell values k2i ∼ m2; we will see an

(n+ n′)’th order pole develop if all momenta are placed on-shell, and the coefficient of that

pole is the transition amplitude. 23

Key takeaways: LSZ in our renormalization scheme requires the conditions 〈0|0〉 = 1,

〈0|φr(x)|0〉 = 0, 〈k|φr(x)|0〉 = e−ikx, and implies a further condition 〈k, n|φr(x)|0〉 = 0

where |k, n〉 is a multiparticle state with total 4-momentum k and n is a label for all other

characteristics e.g. relative momenta. |0〉 is the vacuum of the full, interacting theory. An

23If following along with [5], notice the field is normalized differently such that the propagators have a
factor of Z upstairs; they pick our normalization for φr only much later, in Section 10.2, thereby eliminating
these pesky factors of Z. This choice, where the field φr which satisfies 〈k|φr(x)|0〉 = e−ikx is also the field
that appears in the Lagrangian, is part of the on-shell renormalization scheme we are developing. This is not
necessary; the field in the Lagrangian can instead satisfy 〈k|φ(x)|0〉 = Ze−ikx, for example in the minimal
subtraction scheme (see e.g. Ch. 27 of [1] or Section 18.3.1 of [4]). In such a situation the LSZ formula has
to be modified by multiplying the RHS by a factor of Z−1/2 for each external particle. By a similar token,
the mass parameter in the Lagrangian mr will not necessarily correspond to the physical mass mph. But in
the on-shell renormalization scheme they are one and the same, as we will soon see.
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implication of the above is that our asymptotic states, created by a†, are single-particle

momentum eigenstates in the full, interacting theory. They are on-shell, k2 = −m2
ph. The

asymptotic states will correspond to external Feynman lines, which must therefore be exact

momentum eigenstates. While these are difficult to calculate, since they have to take into

account all loop corrections to the external lines, we will see in Section 15 that they have an

isolated pole at the on-shell value k2 = −m2
ph, with residue Z. The location of this pole is

sometimes called the pole mass, and our scheme says that the Lagrangian mass parameter

mr satisfies mr = mph. Our scheme also says Z = 1. Anyway, this means we can just use the

propagator 1/(k2 + m2
r − iε) for these external lines, and not take into account all the

loops on external lines. As long as we are going on-shell for the external lines, all these

loops do is shift the bare mass m to the pole or physical mass mph. Ignoring these loops on

external lines goes by the name of amputation, and diagrams without such loops are called

amputated Feynman diagrams.
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12 Scattering amplitudes

We return to our study of general interacting scalar field theory. But before getting into

scattering amplitudes let’s revisit (10.46) and understand the role of the counterterms a

little better. We’ll look at the Y φ counterterm in particular. Notice that if we had the

action (10.44) without any counterterms, we would calculate

〈0|φ0(x)|0〉 =
1

i

δ

δJ(x)
Z(J)

∣∣∣
J=0

=
δ

δJ(x)
W (J)

∣∣∣
J=0

(12.1)

This quantity is nonzero, and has all sorts of contributions. They are all the diagrams that

contribute to Z(J) at order J , i.e. all diagrams with a single source J , except since we are

computing a correlation function we remove the source J . Since we are omitting all vacuum

diagrams to maintain Z(0) = 1, this excludes any disconnected vacuum diagrams. At leading

order we have the diagram

Using our Feynman rules we wrote down at the end of Section 10.1, we have a factor of

−iG(x− y) for the propagator beginning at x and ending at the three-point vertex which we

will call y, another propagator −iG(y−y) for the loop, an integral iλ
∫
d4y for the three-point

vertex, and we divide by 2 for the symmetry factor of the loop:

〈0|φ0(x)|0〉 =
1

2
iλ

∫
d4y

1

i
G(x− y)

1

i
G(y − y) +O(λ3) (12.2)

So this screws up one of the conditions we needed for the validity of the LSZ formula. But

that’s where the Y φr counterterm comes in, singing “Here I come to save the day!”. Re-

member that this appeared due to a shift to cancel the one-point function, so we should

see how the final theory with counterterms (10.46) exhibits a vanishing one-point function.

It does this because Y φr leads to an additional vertex that can be drawn, with its own

Feynman rule. This vertex is one where a single line can simply end, and the Feynman rule

assigns this vertex a factor of iY
∫
d4z if the spacetime point of the vertex is z. We will as-

sume that Y = O(λ), which we will see shortly is self-consistent. The relevant diagram is then
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and contributes iY
∫
d4y 1

iG(x− y). The one-point function becomes

〈0|φr(x)|0〉 = (iY +
1

2
(iλ)

1

i
G(0))

∫
d4y

1

i
G(x− y) +O(λ3) (12.3)

For this to vanish at O(λ), we pick

Y =
1

2
iλG(0) +O(λ3) . (12.4)

This framework is only sensible if Y is real (because φ is Hermitian and we need our Hamil-

tonian, which has the term Y φ in it, to be Hermitian). To check this we need to evalute

G(0) =

∫
d4k

(2π)4
1

k2 +m2 − iε
, (12.5)

which we have already discussed is infinite. Armed with some notion of regularizing these

sorts of infinities, we know that we need to introduce some sort of ultraviolet cutoff Λ on the

high-frequency modes. We will do this in a way that preserves the Lorentz transformation

properties of G(x− y):

G(x− y) −→
∫

d4k

(2π)4
eik(x−y)

k2 +m2 − iε

(
Λ2

k2 + Λ2 − iε

)2

. (12.6)

This integral is now convergent (we will see how to evaluate it later), and for Λ� m we have

G(0) =
i

16π2
Λ2 . (12.7)

Thus we see that Y is real, as required, and infinite, as we warned counterterms would be. The

physical quantity, 〈0|φr(x)|0〉, is zero, at least to linear order in λ which is how far we have

calculated. We could continue this to higher orders in λ although it gets more complicated.

But in any event this is generally how working with counterterms will go: when calculating

physically measurable quantities the non-counterterm part of the action will produce some

infinities that will be cancelled by the counterterm part of the action, leaving the physical,

finite part.

Once we have tuned Y to ensure 〈0|φr(x)|0〉 = 0 to all orders in λ, then the sum of
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all connected diagrams with a single source is zero. These are known as tadpole diagrams.

Furthermore, a wonderful simplification occurs for all of our Feynman diagrams. It turns out

we can ignore any diagram that you can split into two pieces by cutting across

a single line such that one of the two diagrams has no sources. The sourceless

subdiagram can simply be thought of as a tadpole subdiagram, so regardless of what it is

attached to, it will be cancelled by the Y φr counterterm. So we will exclude any diagrams

with tadpole subdiagrams.

We have learned to calculate Z(J) = eiW (J), with the normalization W (0) = 0 assuring

Z(0) = 〈0|0〉 = 1 as needed. In free theory we have

1

i
G(x1 − x2) = 〈0|Tφ(x1)φ(x2)|0〉 , (12.8)

where we will from now on drop the subscript F for Feynman although that is the Green’s

function we will be using. In the interacting theory we will define

1

i
Gexact(x1 − x2) = 〈0|Tφ(x1)φ(x2)|0〉 (12.9)

Gexact is not a Green’s function even though it has the letter G. It is just the full time-ordered

correlation function in the interacting theory, i.e. with all corrections in whatever couplings

λi we may have. We define the shorthand

δj =
1

i

δ

δJ(xj)
. (12.10)

The two-point correlator can be written as

〈0|Tφ(x1)φ(x2)|0〉 = δ1δ2Z(J)|J=0 = eiW (J) (δ1δ2iW (J)− (δ1iW (J))(δ2iW (J)))
∣∣∣
J=0

(12.11)

= δ1δ2iW (J)|J=0 (12.12)

The four-point correlator can be written as

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = δ1δ2δ3δ4Z(J) (12.13)

= [δ1δ2δ3δ4iW + (δ1δ2iW )(δ3δ4iW ) + (δ1δ3iW )(δ2δ4iW ) + (δ1δ4iW )(δ2δ3iW )]J=0 (12.14)
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We now consider the LSZ formula for two ingoing and two outgoing particles:

〈f |i〉 = i4
∫
d4x1d

4x2d
4x′1d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2) (12.15)

× (−∂21 +m2)(−∂22 +m2)(−∂21′ +m2)(−∂22′ +m2) (12.16)

× 〈0|Tφ(x1)φ(x2)φ(x′1)φ(x′2)|0〉 . (12.17)

Let’s say we input the contribution of the term (δ1δ1′iW )(δ2δ2′iW ) = 1
iG

exact(x1−x′1)1iG
exact(x2−

x′2) from the four-point function into the LSZ formula. Then we get a contribution to 〈f |i〉
that looks like

−
∫
d4x1d

4x2d
4x′1d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2)F (x11′)F (x22′) (12.18)

where F (xij) = (−∂2i +m2)(−∂2j +m2)Gexact(xij) and xij′ = xi− x′j . To do the integrals we

write

exp
[
i(kixi − k′ix′i)

]
= exp

[
i

2
((ki + k′i)(xi − x′i) + (ki − k′i)(xi + x′i))

]
(12.19)

and switch to variables xij′ = xi − x′j and x+ij′ = (xi + x′j)/2. The integrals over x+ii′ give

delta functions and the integrals over xii′ implement a Fourier transforms, resulting in

−(2π)4δ4(k1 − k′1)(2π)4δ4(k2 − k′2)F̃ (k̄11′)F̃ (k̄22′) , (12.20)

where F̃ (k) is the Fourier transform of F and k̄ij′ = (ki + k′j)/2. These delta functions tell

us that the momentum of incoming particle 1 (2) is identical to the momentum of outgoing

particle 1′ (2′), so particles 1 and 2 never scattered off each other! This is a “disconnected”

contribution to the four-point function. The term (δ1δ2′iW )(δ2δ1′iW ) behaves the same way.

The last disconnected term, (δ1δ2iW )(δ1′δ2′iW ) is a bit different, since the momentum delta

functions enforce zero momentum for the incoming state and zero momentum for the outgoing

state. But the incoming (and outgoing) state cannot have a vanishing momentum four-vector

as long as it has some energy (which it does if we have massive particles): k01 +k02 = 2γm > 0.

The Feynman diagrams for these disconnected contributions are like the ones at the end of

Chapter 9, although in this case we have the exact propagators not the free-field Green’s

functions.

From here on out we will consider only the fully connected contributions. This is just a

choice of what to feed into the LSZ machine. These arise via functional derivatives of W . So
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we define the connected correlation functions by

〈0|Tφ(x1) · · ·φ(xn)|0〉c = δ1 · · · δniW (J)
∣∣∣
J=0

, (12.21)

and we plug this into the LSZ formula to ensure we only get fully connected scattering

amplitudes. For our four-point function, we then have

〈0|Tφ(x1)φ(x2)φ(x′1)φ(x′2)|0〉c = δ1δ2δ1′δ2′iW
∣∣∣
J=0

. (12.22)

The diagram that contributes to W at lowest order in λ is given by

This has a symmetry factor of 8 due to (a) factor of 2 from interchanging the (δ/δJ) cluster

at one vertex with the cluster at another vertex, while simultaneously swapping the external

propagators attached to them and reversing the internal propagator, (b) two factors of 2, one

each from swapping two (δ/δJ) factors in a cluster that go into the external propagators,

and simultaneously swapping the propagators.

We have to act on this diagram with four δ’s, which gives us 4! possible ways of pairing

the δ’s with the J ’s. There are three distinct pairings, with a degeneracy of eight per pairing,

which cancels the symmetry factor of 8 from above. This gives the diagrams
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Notice the cancellation of the symmetry factor makes sense from the perspective that the

external points have unique identifiers now, so the interchanges from before are no longer

symmetries. Looking at the diagrams, we see that the three unique pairings correpsond to

whether 1 gets paired with 2, 1′, or 2′ at its vertex. It is unconventional because one likes

to keep the ingoing and outgoing particles in their same location and then change up the

structure of the Feynman diagrams, although if we flouted this convention we could draw all

three Feynman diagrams as below:

But nobody does this, so we will not do it either.

The lack of symmetry factors is unique to tree-level diagrams. We can now use our

Feynman rules from the end of Section 10.1 to get

〈0|Tφ(x1)φ(x2)φ(x′1)φ(x′2)|0〉c = (iλ)2(−i)5
∫
d4yd4z Gyz (12.23)

×
(
Gx1yGx2yGx′1zGx′2z +Gx1yGx′1yGx2zGx′2z +Gx1yGx′2yGx2zGx′1z

)
+O(λ4) , (12.24)

where Gij ..= G(i− j). This is what we want to plug into the LSZ formula. We get

(−∂2i +m2)G(xi − y) = δ4(xi − y) (12.25)

whenever a Klein-Gordon operator acts on a Green’s function, which LSZ assures us will

always happen for every external leg. This allows us to do the x1, x2, x
′
1, x

′
2 integrals to get

〈f |i〉 = iλ2
∫
d4yd4z Gyz

(
ei(k1y+k2y−k′1z−k′2z) + ei(k1y+k2z−k′1y−k′2z) + ei(k1y+k2z−k′1z−k′2y)

)
(12.26)

+O(λ4). (12.27)

We can plug in our Feynman propagator

Gyz =

∫
d4k

(2π)4
eik(y−z)

k2 +m2 − iε
(12.28)
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to write the integrand as a bunch of phase factors which can be integrated to obtain:

〈f |i〉 = iλ2
∫

d4k

(2π)4
(2π)8

k2 +m2 − iε
[
δ4(k1 + k2 − k)δ4(k′1 + k′2 + k) (12.29)

+ δ4(k1 − k′1 + k)δ4(k′2 − k2 + k) + δ4(k1 − k′2 + k)δ4(k′1 − k2 + k)
]

+O(λ4) (12.30)

= iλ2(2π)4δ4(k1 + k2 − k′1 − k′2) (12.31)

×
[

1

(k1 + k2)2 +m2 − iε
+

1

(k1 − k′1)2 +m2 − iε
+

1

(k1 − k′2)2 +m2 − iε

]
+O(λ4) . (12.32)

What a beauty! That was some hard work, but boy is the final answer a marvel. The

overall delta function tells us that momentum is conserved, which is a good sanity check.

Stripping off this factor and a constant lets us define a scattering matrix element T :

〈f |i〉 = (2π)4δ4(kin − kout)iT . (12.33)

In many QFT references T is defined by subtracting the identity matrix from the S-matrix

S, but here we have effectively done this by sticking to fully connected graphs only. By

meditating on the example above and playing with a couple more, we can write down a set

of Feynman rules to compute iT :

————————————————————————————————————————–

L = −1
2∂µφ∂

µφ− m2

2 φ
2 + λ

3!φ
3: position-space Feynman rules for the S-matrix iT

� For each propagator = −iG(x− y),

� For each vertex = iλ
∫
d4z

� For each external line = e±ikx: + is incoming, − is outgoing

� Divide by the symmetry factor

� Sum up all fully connected, amputated diagrams
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————————————————————————————————————————–

It will help to write these rules down in momentum space, since that is often how we will

evaluate them. It will help to put arrows on our propagators. For n incoming and n′ out-

going we will start with n external lines with arrows pointing “into” the diagram, i.e. away

from the external points, and the n′ external lines will have arrows pointing “away” from

the diagram, i.e. toward the external points. We then draw all possible fully connected

graphs filling in these external legs, where each internal leg gets assigned its own arbitrary

momentum. Notice that in (12.29) - (12.30) we had momentum-conserving delta functions

for each vertex in the graph; this is a general rule. We then have the following Feynman rules:

————————————————————————————————————————–

L = −1
2∂µφ∂

µφ− m2

2 φ
2 + λ

3!φ
3: momentum-space Feynman rules for the S-matrix iT

� For each propagator = −i
k2+m2−iε

� For each vertex = iλ

� For each external line = 1

� Impose momentum conservation at each vertex

� Momentum running in loops will not be fixed; integrate over these undetermined mo-

menta
∫ d4p

(2π)4
.

� Divide by the symmetry factor

� Sum up all fully connected, amputated diagrams

————————————————————————————————————————–

92



These sets of rules have not taken into account the counterterms we have discussed. So

if you apply them you will see divergences from e.g. the loop momentum integrals. Let’s

now bring in the counterterms, writing the theory in the form (10.46), which we reproduce

here:

L = −1

2
∂µφr∂

µφr −
m2
r

2
φ2r +

λr
3!
φ3r −

δZ
2
∂µφr∂

µφr −
δm
2
φ2r +

δλ
3!
φ3r + Y φr , (12.34)

= L0 + Lint + Lct (12.35)

We already saw that the Y φr counterterm let us focus on diagrams without tadpole subdia-

grams. That is its role in life. We can treat these counterterms just as in (10.20): we simply

trade φr for −iδ/δJ to write these counterterms as functional differential operators acting

on Z0(J):

Z(J) ∝ ei
∫
d4xLint

(
1
i

δ
δJ(x)

)
e
i
∫
d4xLct

(
1
i

δ
δJ(x)

)
Z0(J) . (12.36)

By the usual arguments then we see that the term (δλ/3!)φ3r introduces a new type of three-

point vertex, and the term (−δZ/2)∂µφr∂
µφr− (δm/2)φ2r introduces a new kind of two-point

vertex, as it can be written

i

2

∫
d4x

(
1

i

δ

δJ(x)

)(
δZ∂

2 − δm
)(1

i

δ

δJ(x)

)
(12.37)

by integrating by parts. Notice that this is really a vertex, not some sort of new propagator,

e.g. you can have many of these vertices sprinkled along a single ordinary propagator, and

you will pick up as many vertex factors as you have two-point vertices. In momentum space

the ∂2 becomes −k2, so in the end we have the following Feynman rules. For simplicity

from here on out we will now drop all the r subscripts, but make sure you know

what theory and what counterterms are being considered in such situations!

————————————————————————————————————————–

L = −1
2∂µφ∂

µφ− m2

2 φ
2 + λ

3!φ
3 − δZ

2 ∂µφ∂
µφ− δm

2 φ
2 + δλ

3! φ
3 + Y φ:

momentum-space Feynman rules for the S-matrix iT

� For each propagator = −i
k2+m2−iε
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� For each vertex = iλ

� For each external line = 1

� For each vertex = −i(k2δZ + δm) ∼ k2O(λ2) +O(λ2)

� For each vertex = iδλ ∼ O(λ2)

� Impose momentum conservation at each vertex

� Momentum running in loops will not be fixed; integrate over these undetermined mo-

menta
∫ d4p

(2π)4
.

� Divide by the symmetry factor

� Sum up all fully connected diagrams without tadpole subdiagrams to compute iT up

to any order O(λn) of interest.

————————————————————————————————————————–

For example, drawing the O(λ2) momentum-space Feynman diagrams for 2-to-2 scaterring

is given by the following:
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The counterterms are irrelevant at this order because there is no diagram with four external

legs and any number of counterterm vertices that will contribute at O(λ2).
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13 Cross sections and decay rates

Now that we have the scattering amplitude T , we want to convert it into something that is

measured in an experiment. We will eventually restrict to 2-to-2 scattering in φ3 theory, for

which we found (12.32) in the previous section, reproduced here:

T = λ2
[

1

(k1 + k2)2 +m2
+

1

(k1 − k′1)2 +m2
+

1

(k1 − k′2)2 +m2

]
+O(λ4) , (13.1)

where we dropped the −iε’s for notational simplicity.

Before restricting to the case above, let’s analyze a general 2-to-2 scattering process.

k1 and k2 are the incoming momenta while k′1 and k′2 are the outgoing momenta. Overall

momentum conservation says k1 + k2 = k′1 + k′2. All particles are on-shell, k2i = −m2
i , where

in general we can have distinct masses. Let’s analyze this scattering process in the center-of-

mass (CM) frame. This means k1 + k2 = 0. We orient k1 along the positive z-axis. So the

only remaining input parameter to specify is |k1|. We could equivalently specify the total

energy E1 + E2. Better yet, let’s define a Lorentz scalar s ..= −(k1 + k2)
2, which in the CM

frame reduces to (E1 + E2)
2. The parameter s is therefore called the CM energy squared.

Using E2
1 = k2

1 +m2
1 and E2

2 = k2
1 +m2

2 (recall k2 = −k1) lets us solve for |k1| in terms of s:

|k1|CM =
1

2
√
s

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 , CM frame . (13.2)

Now we think of the two outgoing particles. Momentum conservation tells us k′1 + k′2 = 0,

while energy conservation tells us (E′1 + E′2)
2 = s. Thus we again have

|k′1|CM =
1

2
√
s

√
s2 − 2(m2

1′ +m2
2′)s+ (m2

1′ −m2
2′)

2 , CM frame . (13.3)

The only remaining parameter specifying the final state is the angle θ between k1 and k′1.

We will specify it instead through the Lorentz scalar t ..= −(k1 − k′1)2, which is related to θ

by

t = −k21 − k′21 + 2k1 · k′1 = m2
1 +m2

1′ − 2E1E
′
1 + 2|k1||k′1| cos θ , any frame (13.4)

where we evaluated the product in an arbitrary reference frame. In the CM frame we simply

pick θ = θCM . The Lorentz scalars s and t are two of the three so-called Mandelstam

variables, defined as

s ..= −(k1 + k2)
2 = −(k′1 + k′2)

2 , (13.5)
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t ..= −(k1 − k′1)2 = −(k2 − k′2)2 , (13.6)

u ..= −(k1 − k′2)2 = −(k2 − k′1)2 . (13.7)

These are not all independent, there is an overall constraint

s+ t+ u = m2
1 +m2

2 +m2
1′ +m2

2′ . (13.8)

The utility of these variables can be seen by writing our amplitude from before

T = λ2
[

1

m2 − s
+

1

m2 − t
+

1

m2 − u

]
+O(λ4) (13.9)

We now consider the fixed target (FT) frame or lab frame, where particle 2 is at rest

(k2 = 0) and bombarded by particle 1. In this frame s = −(k1 + k2)
2 = (E1 + m2)

2 − k2
1.

Now we have E2
1 = k2

1 +m2
1 and E2

2 = m2
2, which we can again use to solve for |k1| in terms

of s and the masses:

|k1|FT =
1

2m2

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 , FT frame . (13.10)

Comparing this with the CM frame (13.2) gives

m2|k1|FT =
√
s|k1|CM . (13.11)

We are allowed to equate the two equations even though they are expressing frame-dependent

quantities because the RHS’s are written in a frame-independent fashion. We will use this

later.

Now we come to state our scattering experiment, which we assume to take place in a large

box of volume V and for large time T . The number of outgoing particles will be arbitrary

but we will have only two incoming particles. Our overlap is given by

〈f |i〉 = (2π)4δ4(kin − kout)iT . (13.12)

To get a probability, we should square this and divide by the norms of the initial and final

states:

P =
|〈f |i〉|2

〈f |f〉〈i|i〉
. (13.13)
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The numerator of this expression is given by

|〈f |i〉|2 = [(2π)4δ4(kin − kout)]2|T |2 . (13.14)

A delta function squared doesn’t usually make sense, but we can write

[(2π)4δ4(kin − kout)]2 = (2π)4δ4(kin − kout)× (2π)4δ4(0) (13.15)

and interpret the latter term as

(2π)4δ4(0) =

∫
d4xei0·x = V T . (13.16)

The norm of a single-particle state is given by 〈k|k〉 = (2π)32k0δ3(0) = 2k0V , so we have

〈i|i〉 = 4E1E2V
2 , 〈f |f〉 =

n′∏
j=1

2k′0j V . (13.17)

If we divide by the total time T we get a probability per unit time

Ṗ =
(2π)4δ4(kin − kout)V |T |2

4E1E2V 2
∏n′

j=1 2k′0j V
. (13.18)

This is the probability per unit time to scatter into a set of outgoing particles with precise

momenta k′µj . To get something measurable we want a differential cross-section dσ. The first

step is to integrate over outgoing three-momenta k′j over some small range. Due to the box

all three-momenta are quantized: k′j = (2π/L)n′j , where V = L3 and n′j is a three-vector

with integer entries (we are assuming periodic boundary conditions). In the limit of large L

we have ∑
n′j

−→ V

(2π)3

∫
d3k′j , (13.19)

so we should multiply Ṗ by one of these factors for each outgoing particle. This gives

Ṗ −→ (2π)4δ4(kin − kout)
4E1E2V

|T |2
n′∏
j=1

d3k′j
(2π)32k′0j

. (13.20)

To finally convert Ṗ into dσ, we have to divide by the incident flux. We will do this in the

FT frame where particle 2 is at rest. The incident flux is then the sum of the speeds of the
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incident particles striking particle 2, per unit volume. We just have one incident particle, of

speed |k1|/E1, so the incident flux is |k1|/(E1V ). We divide (13.20) by this and set E2 = m2

to get

dσ =
(2π)4δ4(kin − kout)

4|k1|FT m2
|T |2

n′∏
j=1

d3k′j
(2π)32k′0j

, FT frame (13.21)

We want to upgrade this to something valid in an arbitrary frame. To do this notice that

the expression for |k1|FTm2 in (13.10) is actually written generally in terms of the Lorentz

invariant s. So to upgrade this to a Lorentz-invariant expression we simply use that expres-

sion. As a convention, we will actually use (13.11) to swap out for |k1|CM
√
s, but again this

expression has a Lorentz-invariant form given by the right-hand-side of (13.2). So in the end

we have

dσ =
1

4|k1|CM
√
s
|T |2dLIPSn′(k1 + k2) , (13.22)

where we |k1|CM is given in terms of s by (13.2), and we have defined the n′-body Lorentz-

invariant phase space measure

dLIPSn′(k) ..= (2π)4δ4(k −
n′∑
j=1

k′i)
n′∏
j=1

d3k′j
(2π)32k′0j

. (13.23)

Well, this dLIPS name is awful, but besides that, we have our final result for the differential

cross section for the scattering 2→ n′.

We can specify now to n′ = 2. We need to evaluate

dLIPS2(k1 + k2) = (2π)4δ4(k1 + k2 − k′1 − k′2)
d3k′1

(2π)32k′01

d3k′2
(2π)32k′02

. (13.24)

We can do it in any reference frame since it is Lorentz-invariant. We’ll pick the CM frame

where k1 + k2 = 0 and k01 + k02 = E1 + E2 =
√
s. Then we can write

dLIPS2(k1 + k2) =
d3k′1d

3k′2
4(2π)2E′1E

′
2

δ(E′1 + E′2 −
√
s)δ3(k′1 + k′2) (13.25)

We integrate over d3k′2 to get

dLIPS2(k1 + k2) =
d3k′1

4(2π)2E′1E
′
2

δ(E′1 + E′2 −
√
s) (13.26)
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where now

E′1 =
√

k′21 +m2
1′ , E′2 =

√
k′21 +m2

2′ (13.27)

due to the delta function. We now write

d3k′1 = |k′1|2d|k′1| sin θ dθ dφ =: |k′1|2d|k′1|dΩCM (13.28)

where dΩCM is the differential solid angle, with θ the angle between k1 and k′1 in the

CM frame. We can now do the d|k′1| integral as well, using the delta function identity

δ(f(x)) =
∑

i
δ(xi)
|f ′(xi)| , where the sum is over the zeroes of f(x). Our delta function argument

has just one zero, it is when |k1| is given by (13.2). Using (13.27), f ′(xi) therefore evaluates

to

∂

∂|k′1|
(
E′1 + E′2 −

√
s
)

=
|k′1|
E′1

+
|k′1|
E′2

= |k′1|
(
E′1 + E′2
E′1E

′
2

)
=
|k′1|
√
s

E′1E
′
2

. (13.29)

We finally have

dLIPS2(k1 + k2) =
|k′1|

16π2
√
s
dΩCM . (13.30)

Our differential cross-section is therefore

dσ

dΩCM
=

1

64π2s

|k′1|
|k1|
|T |2 , (13.31)

where |k1| and |k′1| are the functions of s given by (13.2) - (13.3), and dΩCM = sin θ dθ dφ

where θ is the angle between k1 and k′1 in the CM frame.

We can upgrade this final expression to a Lorentz-invariant form as follows. We take the

differential of the Mandelstam t at fixed s using (13.4) to get

dt = 2|k1||k′1|d cos θ = 2|k1||k′1|
dΩCM

2π
, (13.32)

which lets us rewrite (13.31) as

dσ

dt
=

1

64πs|k1|2
|T |2 , (13.33)

where as usual |k1| is given as a function of s by (13.2). We can use this to go into any

frame we wish by taking the differential of (13.4) in that frame, although generally this will
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be more complicated than the CM frame.

We can define a total cross section σ by integrating the differential one over all possible

momenta. Let’s do this for n′ outgoing particles. We will have to divide by an appropriate

symmetry factor in the case of identical outgoing particles:

S =
∏
i

n′i! , (13.34)

where there are n′i identical outgoing particles of type i. This symmetry factor is needed

because the dLIPS outgoing momentum integrals are all treated distinctly, which is incorrect

if some of the particles are identical. Thus we have

σ =
1

S

∫
dσ . (13.35)

For two outgoing particles we have

σ =
1

S

∫
dΩCM

dσ

dΩCM
=

2π

S

∫ +1

−1
d cos θ

dσ

dΩCM
. (13.36)

We can also write this as

σ =
1

S

∫ tmax

tmin

dt
dσ

dt
. (13.37)

To do this integral, we should trade out u for s and t using (13.8) and then integrate over t

at fixed s. tmin is fixed by cos θ = −1 and tmax by cos θ = +1.

Let’s do this for φ3 theory. We need to express T from (13.9) in terms of t and σ to use

(13.37). We use that tmin = −(s − 4m2) and tmax = 0. We use the linear constraint (13.8)

to write u = 4m2 − s− t, which gives

dσ

dt
=

1

64πs|k1|2
|T |2 =

λ4

16πs(s− 4m2)

(
1

m2 − s
+

1

m2 − t
+

1

s+ t− 3m2

)2

+O(λ6) . (13.38)

To get the total cross section we use that the outgoing particles are identical so S = 2.

Integrating then gives

σ =
λ4

32πs(s− 4m2)

(
2

m2
+

s− 4m2

(s−m2)2
− 2

s− 3m2
+

4m2

(s−m2)(s− 2m2)
log

(
s− 3m2

m2

))
(13.39)

+O(λ6) (13.40)
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In the nonrelativistic limit s− 4m2 � m2 this becomes

σ =
25λ4

1152πm6

(
1− 79

60

(
s− 4m2

m2

)
+ . . .

)
+O(λ6) nonrelativistic , (13.41)

while in the extreme relativistic limit s� m2 this becomes

σ =
λ4

16πm2s2

(
1 +

7

2

m2

s
+ . . .

)
+O(λ6) extreme relativistic . (13.42)

Example 1: Let’s compute the cross-section in the CM frame for φ3 theory, which requires

using (13.36). To use it, we need to express t and u in terms of s and θ and then integrate

over q at fixed s.

T is given by (13.9). Since all the masses are equal, in the CM frame we have E =
√
s/2 for

the energy of any of the four particles, and (13.2) - (13.3) simplify to |k′1| = |k1| = 1
2

√
s− 4m2.

Then (13.4) becomes

t = −1

2
(s− 4m2)(1− cos θ) . (13.43)

The constraint (13.8) gives

u = −1

2
(s− 4m2)(1 + cos θ) . (13.44)

So |T |2 is a bit of a mess. We can consider the nonrelativistic limit |k1| � m, which from

the above gives s− 4m2 � m2. Thus

T =
5λ2

3m2

[
1− 8

15

(
s− 4m2

m2

)
+

5

18

(
1 +

27

25
cos2 θ

)(
s− 4m2

m2

)2

+ . . .

]
+O(λ4) .(13.45)

At leading order in the nonrelativistic expansion we see that the differential cross-section is

isotropic.

We can also consider the extreme relativistic limit |k1| � m, i.e. s� m2, which gives

T =
λ2

s sin2 θ

[
3 + cos2 θ −

(
(3 + cos2 θ)2

sin2 θ
− 16

)
m2

s
+ . . .

]
+O(g4) . (13.46)

Notice that the differential cross section in this limit is sharply peaked in the forward (θ = 0)
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and backward (θ = π) directions.

We will actually not treat decay rates (e.g. 1-to-n′ processes for n′ > 1), since there

is a subtlety with the LSZ formula in this case: the formula uses exact eigenstates of the

full Hamiltonian for the incoming states, but such things are stable and do not decay! See

Chapter 25 of [1] for some more discussion about this, although it is not totally satisfactory.
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14 Dimensional analysis

Since we will begin doing things in general dimension, it will help to have a handle on the units

of various quantities and their dependence on dimension. We are working with ~ = c = 1.

That means time T and length L are the same units (since they are normally converted by

L = vT for some velocity v which is now dimensionless), and length and inverse mass M−1

are the same units (to see how they are converted, consider the formulas E = hc/λ and

E = Mc2 where λ is a length). So any quantity A can be thought of as having units of mass

to some power. We will call this power [A]. We have

[m] = +1 , [xµ] = −1 , [∂µ] = +1 , [ddx] = −d . (14.1)

We consider a general interacting scalar field theory in d dimensions

L = −1

2
∂µφ∂µφ−

m2

2
φ2 −

N∑
n=3

λn
n!
φn . (14.2)

The action is S =
∫
ddxL and the path integral is

Z(J) =

∫
Dφ exp

[
i

∫
ddx(L+ Jφ)

]
. (14.3)

The action must be dimensionless, since it sits in an exponent, so [S] = 0 (recall that it’s

really eiS/~ but we have set ~ = 1). We therefore have [L] = d, so every term in the

Lagrangian must have this mass dimension. Investigating ∂µ∂φ, we see that

[φ] =
1

2
(d− 2) . (14.4)

Then investigating λnφ
n, we see that

[λn] = d− n

2
(d− 2) . (14.5)

For our φ3 theory, we have

[λ3] =
1

2
(6− d) . (14.6)

Notice it is dimensionless for d = 6. Theories with dimensionless couplings have much more

structure at all energy scales, so we will fix to this case later.

Coupling with mass dimension [λ] < d, λ = d, and λ > d are called relevant, marginal,
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and irrelevant, respectively. You will soon learn that relevant couplings are important at

low energies (and unimportant at high energies), marginal couplings are important at all

energies, and irrelevant couplings are unimportant at low energies. Since marginal couplings

have this rich structure, we will at various points stick d = 6 in our calculations in φ3 theory.
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15 The Kallen-Lehmann form of the exact propagator

In the next few sections we will be studying loop corrections to vertices and propagators.

When we get into the guts of the calculations, we will often fix the spacetime dimension

d = 6 for our φ3 theory, since for reasons you will learn about next quarter this is the

simplest situation to analyze the effects we are interested in. While setting up formalism,

however, we will keep d general.

The first thing we’ll do is see how much we can learn about Gexact(x − y) from general

principles. Recall that

Gexact(x− y) ..= i〈0|Tφ(x)φ(y)|0〉 . (15.1)

According to our LSZ analysis, we want normalization

〈0|φ(x)|0〉 = 0 , 〈k|φ(x)|0〉 = e−ikx . (15.2)

The one-particle momentum eigenstates |k〉 have normalization

〈k|k′〉 = (2π)d−12ωδd−1(k− k′) , (15.3)

with ω =
√

k2 +m2 as usual. (We will work in our on-shell renormalization scheme where

Z = 1 and m = mph.) The identity operator in the one-particle subspace has resolution

I1 =

∫
d̃k |k〉〈k| , (15.4)

where

d̃k ..=
dd−1k

(2π)d−12ω
(15.5)

is the Lorentz invariant phase-space differential. We can also Fourier transform

Gexact(x− y) =

∫
ddk

(2π)d
eik(x−y)G̃exact(k2) . (15.6)

Let’s warm up with the free theory, for which

G̃exact(k2) =
1

k2 +m2 − iε
. (15.7)

This object has a single pole at k2 = −m2, with residue one. m is the physical mass of the
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particle, i.e. it is what enters into the four-momentum of the particle.

Let’s now analyze a general interacting scalar field theory. We assume there exists a

vacuum state with vanishing energy and momentum. Let’s analyze the states with vanishing

3-momentum. The lowest energy state after the vacuum is a single-particle state. This has

energy E = m. So there is a gap above the vacuum state. We will assume that there are no

bound states in the theory, in which case the next set of states is a continuum which begins

at E = 2m. It is a continuum because even with vanishing total 3-momentum the multiple

particles can have relative momenta which can lead to any energy we wish. And of course,

we can move off the axis of vanishing total 3-momentum.

To analyze the exact propagator, let’s take x0 > y0 so we can ignore the T symbol. We will

insert a complete set of energy eigenstates (of the type discussed immediately above) between

the two fields. Our notation will be |0〉 for the vacuum, |k〉 for single-particle states specified

by a 3-momentum k and energy ω =
√

k2 +m2, and |k, n〉 for multiparticle states (which

form a continuum) with total 3-momentum k and other parameters, like relative momenta,

that we will collectively denote by n. The energy of one of these states is ω =
√

k2 +M2

where M ≥ 2m is one of the parameters in the set n. So we have

〈0|φ(x)φ(y)|0〉 = 〈0|φ(x)|0〉〈0|φ(y)|0〉+

∫
d̃k〈0|φ(x)|k〉〈k|φ(y)|0〉 (15.8)

+
∑
n

∫
d̃k〈0|φ(x)|k, n〉〈k, n|φ(y)|0〉 (15.9)

The sum over n is schematic and represents multiple things like integrals over relative mo-

menta. Using (15.2) and

〈k, n|φ(x)|0〉 = 〈k, n|e−iPµxµφ(0)eiP
µxµ |0〉 = e−ikx〈k, n|φ(0)|0〉 (15.10)

gives

〈0|φ(x)φ(y)|0〉 =

∫
d̃keik(x−y) +

∑
n

∫
d̃keik(x−y)|〈0|φ(0)|k, n〉|2 . (15.11)

Let’s cook up some notation. We define the spectral density

ρ(s) ..=
∑
n

|〈k, n|φ(0)|0〉|2δ(s−M2) (15.12)

Since M is one of the parameters in n, and the multiparticle continuum begins at 2m, i.e.
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s = 4m2, we have ρ(s) ≥ 0 for s ≥ 4m2 and ρ(s) = 0 for s < 4m2. So we can write

〈0|φ(x)φ(y)|0〉 =

∫
d̃k eik(x−y) +

∫ ∞
4m2

ds ρ(s)

∫
d̃k eik(x−y) . (15.13)

Since the first term came from the single-particle states it has k0 =
√

k2 +m2, while the

second term has k0 =
√

k2 +M2 =
√

k2 + s due to the delta function. Considering the other

time-ordering gives simply flips x↔ y, which we can combine to write

〈0|Tφ(x)φ(y)|0〉 = θ(x0 − y0)〈0|φ(x)φ(y)|0〉+ θ(y0 − x0)〈0|φ(y)φ(x)|0〉 . (15.14)

Now comes the key step. We use our old expression for the Feynman propagator∫
ddk

(2π)d
eik(x−y)

k2 +m2 − iε
= iθ(x0 − y0)

∫
d̃k eik(x−y) + iθ(y0 − x0)

∫
d̃k e−ik(x−y) , (15.15)

obtained by closing the countour and integrating, to write

i〈0|Tφ(x)φ(y)|0〉 =

∫
ddk

(2π)d
eik(x−y)

[
1

k2 +m2 − iε
+

∫ ∞
4m2

ds ρ(s)
1

k2 + s− iε

]
. (15.16)

We can now identify the Fourier transform as

G̃exact(k2) =
1

k2 +m2 − iε
+

∫ ∞
4m2

ds ρ(s)
1

k2 + s− iε
. (15.17)

This is it! This is known as the Kallen-Lehmann spectral representation of the exact

momentum-space propagator. A key result is that G̃exact(k2) has an isolated pole at k2 =

−m2 with residue one, just like the propagator in free-field theory. In a more general renor-

malization scheme this first term would look like Z/(k2 +m2
ph − iε). Notice that this repre-

sentation of the scalar propagator is theory-independent – all of the content of the particular

theory one is considering is buried in the spectral density ρ(s), and in the mass m of a

single-particle state.
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16 Loop corrections to the propagator

Another way we could try to compute the exact propagator is by summing up all the loop

corrections to the free propagator. This should agree with our general formula above, so let’s

check that it does. We should pick a particular theory to calculate in. We will, of course,

pick φ3 theory. From now on we will call the field φ instead of φr to reduce clutter, but keep

in mind that it satisfies the LSZ conditions (15.2). So we want to calculate

1

i
Gexact(x1 − x2) = 〈0|Tφ(x1)φ(x2)|0〉 = δ1δ2iW (J)

∣∣∣
J=0

. (16.1)

Recall W (J) is the sum of connected diagrams with W (0) = 0, i.e. there are no vacuum

diagrams. The O(λ2) corrections to the propagator are given by

Using the momentum-space Feynman rules we wrote down previously gives (recall we are

back to using the Feynman rules for time-ordered correlators, not scattering amplitudes)

1

i
G̃exact(k2) =

1

i
G̃(k2) +

1

i
G̃(k2)

[
iΠ(k2)

] 1

i
G̃(k2) +O(λ4) , (16.2)

where

G̃(k2) =
1

k2 +m2 − iε
(16.3)

is the free-field propagator and we have defined

iΠ(k2) =
1

2
(iλ)2

(
1

i

)2 ∫ ddp

(2π)d
G̃((k + p)2)G̃(p2)− i(δZk2 + δm) +O(λ4) , (16.4)

known as the self-energy. The 1/2 is due to a symmetry of the bubble: exchanging the two

propagators in it and simultaneously two of the three δ/δJ ’s in each of the clusters leaves the

diagram unchanged. Recall that δZ , δm ∼ O(λ2). Notice that we don’t have a counterterm

three-point vertex with a similar bubble structure since δλ ∼ O(λ2), so the contribution of

that diagram would be O(λ4).
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We can calculate G̃exact(k2) to all orders in λ if we consider higher-order corrections to

Π(k2), e.g. the O(λ4) corrections below

and if we consider arbitrarily many insertions of Π, as below

In equations, this diagram says

1

i
G̃exact(k2) =

1

i
G̃(k2) +

1

i
G̃(k2)

[
iΠ(k2)

] 1

i
G̃(k2) (16.5)

+
1

i
G̃(k2)

[
iΠ(k2)

] 1

i
G̃(k2)

[
iΠ(k2)

] 1

i
G̃(k2) (16.6)

+ . . . . (16.7)

If we take iΠ(k2) to be the sum of all possible “one-particle irreducible” (1PI for short)

diagrams, then this sum will indeed include all contributions to G̃exact(k2). 1PI diagrams

are ones that cannot be disconnected into two pieces by cutting a single line. All 1PI

diagrams that contribute to iΠ(k2) at O(λ4) are exhibited in the set of diagrams above. The

contributions to iΠ(k2) are defined without including the external propagators (since they

will be included in the sum for the propagator). Summing the geometric series above gives

G̃exact(k2) =
G̃(k2)

1− iΠ(k2)1i G̃(k2)
=

1

k2 +m2 − iε−Π(k2)
. (16.8)

This is yet another general representation of the scalar propagator, where now the content

of the particular theory being considered is buried in Π(k2) and the mass of single-particle

states m. But this should definitely agree with our Kallen-Lehmann representation (15.17),

so we should be able to write it in that form. This means that in our renormalization scheme

the expression above should have a pole at k2 = −m2 with residue one. This is true if and
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only if

Π(−m2) = 0 , Π′(−m2) = 0 , (16.9)

where the prime denotes a derivative with respect to k2. Practically speaking, (16.9) is how

we will implement our renormalization conditions. We will therefore use it to solve for δZ

and δm.

Having shown the consistency between summing all loop diagrams and the general ap-

proach from the previous section, let’s now try to calculate an actual correction to the

propagator. To calculate the O(λ2) corrections, we need to evaluate the integrals in (16.4).

Notice that for d ≥ 4, the momentum integral over p diverges for large p (logarithmically for

d = 4). We can introduce an ultraviolet cutoff, as we did for the tadpole diagrams, but let’s

just proceed and see what we can say about the formal structure of this integral.

To evaluate the integral we need several tricks. The first is Feynman’s formula to combine

denominators,

1

A1 · · ·An
=

∫
dFn(x1A1 + · · ·+ xnAn)−n , (16.10)

where the integration measure is over the “Feynman parameters” xi:∫
dFn = (n− 1)!

∫ 1

0
dx1 · · · dxn δ(x1 + . . . xn − 1) ,

∫
dFn = 1 . (16.11)

We use this to write

G̃((k + p)2)G̃(p2) =
1

(p2 +m2)((p+ k)2 +m2)
(16.12)

=

∫ 1

0
dx
[
x((p+ k)2 +m2) + (1− x)(p2 +m2)

]−2
(16.13)

=

∫ 1

0
dx
[
p2 + 2xp · k + xk2 +m2

]−2
(16.14)

=

∫ 1

0
dx
[
(p+ xk)2 + x(1− x)k2 +m2

]−2
(16.15)

=

∫ 1

0
dx
[
q2 +D

]−2
, (16.16)

where q ..= p + xk and D ..= x(1 − x)k2 + m2. We have suppressed the iε factors although

they are important here. In particular, we want to change integration variables from p to q

(which has trivial Jacobian), and to do the integral over q0 we want to rotate the contour
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q0 ∈ (−∞,∞) to the imaginary axis q0 ∈ (−i∞, i∞). We can do this if the integrand decays

sufficiently quickly for |q0| → ∞, and if we do not pass through any poles. The poles are at

q0 = −ω + iε and q0 = ω − iε, so we simply need to rotate the contour counterclockwise!

We will implement this by the analytic continuation q0 = iqd (with qj unchanged). Notice

by this definition the Lorentzian 4-vector q2 = −(q0)2 + q2i equals the Euclidean 4-vector

q2E = q2i + q2d where i = 1, . . . , d− 1. So all that changes is the measure ddq → iddqE .

Defining

I(k2) ..=

∫ 1

0
dx

∫
ddqE
(2π)d

1

(q2E +D)2
(16.17)

lets us write

Π(k2) =
1

2
λ2I(k2)− δZk2 − δm +O(λ4) . (16.18)

We can now evaluate I. We actually want the result for d = 6, but the integral looks divergent

for d ≥ 4. We can deal with this in many ways. One is dimensional regularization: evaluate

the integral for arbitrary d < 4 and then analytically continue in dimension. Alternatively,

we could introduce an ultraviolet cutoff as we saw before in the evaluation of G(0). We would

do this via the replacement

G̃(`2)→ 1

`2 +m2 − iε
Λ2

`2 + Λ2 − iε
(16.19)

in the expression G̃((k+p)2)G̃(p2). This is known as Pauli-Villars regularization, and makes

the integral convergent for d < 8.

Why do these work, and how do we know they won’t give different answers? To see this,

consider expanding Π(k2) around −m2:

Π(k2) =

[
1

2
λ2I(−m2) + δZm

2 − δm
]

(16.20)

+

[
1

2
λ2I ′(−m2) + δZ

]
(k2 +m2) (16.21)

+
1

2!

[
1

2
λ2I ′′(−m2)

]
(k2 +m2) + · · ·+O(λ4) (16.22)

From the explicit integral expression (16.17) we see that I(−m2) diverges for d ≥ 4, I ′(−m2)

diverges for d ≥ 6, and in general I(n)(−m2) diverges for d ≥ 4 + 2n. Since δZ and δm begin

at O(λ2), we can use them to cancel the first two divergences, 1
2λ

2I(−m2) and 1
2λ

2I ′(−m2).
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This will require the counterterms be infinite, but we’ve seen this before. The counterterms

are not directly measurable, and their values can differ depending on how we regularize these

infinities (i.e. Pauli-Villars vs dimensional regularization). Of course, to have a completely

finite expression the rest of the I(n)(−m2) need to be finite as well. This is only true for

d < 8, where I ′′(−m2) and higher derivatives give manifestly convergent integrals. The fact

that our counterterms yield a finite expression for d < 8 is precisely why Pauli-Villars worked

to give a finite expression for d < 8. In this range, any regularization which preserves Lorentz

invariance will give the same answer.

Not convinced that these two methods (and others) will agree? Here is another argument.

Let’s compute Π(k2) = 1
2λ

2I(k2)−δZk2−δm+O(λ2) by first taking two derivatives of Π(k2)

with respect to k2:

Π′′(k2) =
1

2
λ2I ′′(k2) +O(λ4) , I ′′(k2) =

∫ 1

0
dx 6x2(1− x)2

ddqE
(2π)d

1

(qE +D)4
. (16.23)

This is now convergent for d < 8, and we can integrate it up using the boundary conditions

Π(−m2) = Π′(−m2) = 0 to get Π(k2), without even computing the counterterms!

Enough philosophy, let’s calculate I(k2). We work in spherical coordinates, and the an-

gular part of the integarl gives the area of the d-dimensional unit sphere Ωd = 2πd/2/Γ(d/2).

The radial part of the integral can be evaluated in terms of gamma functions. We will use

the following general expression∫
ddqE
(2π)d

(q2E)a

(q2E +D)b
=

Γ(b− a− d/2)Γ(a+ d/2)

(4π)d/2Γ(b)Γ(d/2)
D−(b−a−d/2) , (16.24)

where our case is a = 0 and b = 2.

Now we want to fix to d = 6, since in that case λ is dimensionless. We will actually put in

d = 6− ε and expand in ε. In this case λ has mass dimension ε/2. At this point is is helpful

to introduce an (arbitrary!!) mass prameter µ̃, with [µ̃] = 1, and measure dimensionful

quantities in units of this mass parameter. For example we define the dimensionless coupling

λ̄ =
λ

µ̃ε/2
. (16.25)

λ̄ is just the original dimensionful coupling measured in units of µ̃. So [λ̄] = 0. This is just

bookkeeping: since µ̃ was arbitrary, our scattering amplitudes will not depend on it.24

24 [1] glosses over this point, but it is actually quite subtle. Let’s say we are in the situation with c 6= 1
and we take a velocity v with units of m/s and define a dimensionless velocity v̄ = v/c. Now we ask: “how
long would it take to travel a distance L when going at velocity v?” Phrased in terms of v̄, the answer is
t = L/(v̄c), so the answer clearly depends on c. If we defined a different v̄ = v/vs, where vs is say the speed
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Using (16.24) with a = 0, b = 2 to evaluate (16.17) and set d = 6− ε gives

I(k2) =
Γ(−1 + ε/2)

(4π)3

∫ 1

0
dxD

(
4π

D

)ε/2
. (16.26)

Defining α = λ̄2/(4π)3 lets us write the self-energy as

Π(k2) =
α

2
Γ(−1 + ε/2)

∫ 1

0
dxD

(
4πµ̃2

D

)ε/2
− δZk2 − δm +O(α2) . (16.27)

Taking the ε → 0 limit with the help of Xε/2 = 1 + ε
2 ln X + O(ε2) and Γ(−n + ε/2) =

(−1)n
n!

(
2/ε− γ +

∑n
j=1 j

−1 +O(ε)
)

for Euler-Mascheroni constant γ = 0.5772... gives

Π(k2) = −α
2

[(
2

ε
+ 1

)(
k2

6
+m2

)
+

∫ 1

0
dxD ln

(
4πµ̃2

eγD

)]
− δZk2 − δm +O(α2) , (16.28)

where we did the trivial integral
∫ 1
0 dxD = k2/6 + m2. To clean things up a bit more we

define µ =
√

4πe−γ/2µ̃ to write

Π(k2) =
α

2

∫ 1

0
dxD ln(D/m2)−

{
α

6

[
1

ε
+ ln(µ/m) +

1

2

]
+ δZ

}
k2 (16.29)

−
{
α

[
1

ε
+ ln(µ/m) +

1

2

]
+ δm/m

2

}
m2 +O(α2) . (16.30)

Now we can pick δZ and δm to cancel the divergences and µ dependence:

δZ = −α
6

[
1

ε
+ ln(µ/m) +

1

2
+ κZ

]
+O(α2) , (16.31)

δm = −m2α

[
1

ε
+ ln(µ/m) +

1

2
+ κm

]
+O(α2) , (16.32)

of sound, then the answer is t = L/(v̄vs). So even though c or vs or whatever was arbitrary, the answer
clearly depends on it! But all c or vs is doing is providing the right units for time. In our QFT analysis,
recalling our c = ~ = 1 units, everything just has dimensions of mass to some power. This means we can
take any observable quantity σ with mass dimension [σ] = k and write σ = mkf(· · · ) WLOG, where f(· · · )
is some function of dimensionless parameters and m is some mass scale, we could choose it to be the mass
of the particle. A dimensionless parameter is something like λ/mε/2. But notice if we write this in terms of
dimensionless λ̄ = λ/µ̃ε/2 and m̄ = m/µ̃, then the µ̃ dependence drops out! This is what is meant by the fact
that our physical answers cannot depend on this scale. (The overall mk can be written as (m̄µ̃)k but this
kind of overall dependence is not what we are interested in; we will leave such things simply as mk.)
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where κZ and κm are arbitrary constants. Thus we have

Π(k2) =
α

2

∫ 1

0
dxD ln(D/m2) + α

(κZ
6
k2 + κmm

2
)

+O(α2) . (16.33)

Finally, to fix κZ and κm we must impose the conditions Π(−m2) = 0 and Π′(−m2) = 0.

This can be done since the integral can be done in closed form, and gives

κZ =
7

3
−
√

3π

2
, κm =

11

12
−
√

3π

6
. (16.34)

Altogether this gives

Π(k2) =
α

12

[
(3− π

√
3)k2 + (3− 2π

√
3)m2 + 2k2r3 tanh−1 (1/r)

]
+O(α2) , (16.35)

where

r =
√

1 + 4m2/k2 . (16.36)

Phew! That is our final answer. As we discussed at the beginning of the section, our two

expressions for the exact propagator (15.17) and (16.8) have to be consistent. We used this to

extract some information about Π(k2) evlauated at k2 = −m2. But now that we calculated

Π(k2) to O(λ2), we can compare the two expressions again and extract ρ(s) to O(λ2). The

answer is

πρ(s) =
Im Π(−s)

(−s+m2 + Re Π(−s))2 + (Im Π(−s))2
. (16.37)

For details see Chapter 15 of [1], but here we only want to point out that (15.17) and (16.8)

are definitely consistent, and can be matched order by order in perturbation theory.
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17 Loop corrections to the vertex

In the last section we studied perturbative corrections to the tree-level propagator. The tree-

level propagator came from the term −1
2∂mφ∂

µφ − m2φ2/2 in the Lagrangian. But there

are also perturbative corrections to the tree-level vertex we can calculate. The tree-level

vertex comes from the λφ3/3! part of the Lagrangian and gives a factor of iλ in momentum

space. A trivial correction to calculate is the counterterm three-point vertex, which comes

from the term δλφ
3/3! and is O(λ2). This is trivial to calculate because the Feynman rule

tells us it simply contributes iδλ in momentum space. It also doesn’t help us fix δλ, whereas

in the last section we were able to fix δZ and δm by calculating perturbative corrections to

the propagator. We should expect, generally, to fix the counterterms only when we run into

diagrams with loop integrals that will diverge, because practically speaking the counterterms

are there to deal with divergences. So let’s go a bit further in our perturbation series. The

next correction is O(λ3) and is given by the figure below, which we will now calculate.

We can write the exact vertex as

iV exact
3 (k1, k2, k3) = iλ+ iδλ = (iλ)3 (−i)3

∫
dd`

(2π)d
G̃((`− k1)2)G̃(`2)G̃((`+ k2)

2) +O(λ5) .(17.1)

Of course we have only explicitly written the vertex to O(λ3), with all the corrections that

make this the exact vertex buried in O(λ5). If we again define λ̄ = λ/µ̃ε/2, α = λ̄2/(4π)3

and µ2 = 4πe−γµ̃2 as in the previous section, we can write our answer as

λ̄−1V exact
3 (k1, k2, k3) = 1 +

{
α

[
1

ε
+ ln(µ/m)

]
+ δλ

}
− 1

2
α

∫
dF3 ln(D/m2) +O(α2) (17.2)
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where∫
dF3

..= 2

∫ 1

0
dx1dx2dx3 δ(x1 + x2 + x3 − 1) , D ..= x3x1k

2
1 + x3x2k

2
2 + x1x2k

2
3 +m2 .(17.3)

Evaluating the loop integral to get to this point is messy and uses some of the same tricks

as we did for the propagator. It is an important skill to be able to evaluate these things

efficiently, so I encourage you to work this out and consult Chapter 16 of [1] if you get stuck.

Now, as before, we can pick

δλ = −α
[

1

ε
+ ln(µ/m) + κλ

]
+O(α2) , (17.4)

for κλ purely a numerical constant, and we get a totally finite expression that is independent

of µ.

At this point in the propagator calculation, we had two free parameters κm and κZ ,

and we used our two conditions Π(−m2) = Π′(−m2) = 0 to fix them. Those conditions were

really renormalization conditions: we declared our Lagrangian mass parameter m to equal the

physical or pole mass, and we declared the overlap to be normalized as 〈k|φ(x)|0〉 = e−ikx.

Here, to fix κλ, we need to define our coupling λ in some way. Remember: we want to

compare to experiment to fix the parameters in our Lagrangian! Well, we can really define

λ in terms of an experiment however we wish – κλ will just react to make sure the definition

makes sense. For example, say we choose to define λ by the condition

V exact
3 (0, 0, 0) = λ . (17.5)

To ensure this we choose κλ = 0. You can think of this the other way around as well: pick κλ

to be whatever you want, and that will fix λ to equal the three-point vertex at some values

of the momenta.
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A Variational calculus

While one can memorize the rules for manipulating functions, functionals, and variational/functional

derivatives, things can get hairy fast if we’re not careful about the definitions. Most QFT

textbooks are not careful about these definitions, although [2] is an exception (see Chapter

7).

We define a functional S as a map from domain a space of functions C to codomain a

set of numbers, say R:

S : C → R . (A.1)

An example of a space of functions we will care about is field configurations over spacetime

φ : Rd → R. The argument of a functional is often written with square brackets, S[φ]. Notice

it inputs the entire field configuration, meaning the values φ(t,x) for all t and x. The action

of a theory, S =
∫
dtL, is an example of such a functional. Assuming a fluid approximation

to the air in this room, then the average temperature is another functional, which inputs the

temperature T (x) for all x and outputs a number.

Notice that for such a functional like S, it doesn’t make sense to write S[φ, ∂µφ]: since

S already depends on φ everywhere, it also knows about ∂µφ everywhere, so it is not an

independent argument.

The Lagrangian is something you integrate against time to get the action, so we write

S[φ] =

∫ ∞
−∞

dtL[φ(t), φ̇(t)] . (A.2)

The dot denotes a time derivative. We will assume throughout these notes that Lagrangians

depend only on powers of fields and their first derivatives. We have represented the La-

grangian as a functional of two functions. The first function is the field configuration

over all of space at a fixed time t, and the second function is the time deriva-

tive of the field configuration over all of space at the same time t. These two

functions are independent. So we have restricted the space of functions φ : Rd → R to

a a new space of functions, which we will call φ(t) : Rd−1 → R. It inputs a spatial point x

and outputs a number. This is useful notation: when a field which enters into a functional

is missing some arguments, that means we consider the field configuration over all values of

the missing arguments. With this notation, φ(t,x) is not a function, it is instead the number

obtained by evaluating the function φ at t,x, or evaluating the function φ(t) at x.
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We can write the Lagrangian L as a spatial integral over the Lagrangian density L:

S[φ] =

∫ ∞
−∞

dtL[φ(t), φ̇(t)] =

∫
ddxL(φ(t,x), ∂φ(t,x)/∂xµ) =

∫
ddxL(φ(x), ∂µφ(x)),(A.3)

where x is a spacetime point. While it looks like the Lagrangian density is not a Lorentz-

invariant object because of the floating µ index in the argument, any Lorentz-invariant La-

grangian will have this contracted, e.g. in a term like ∂µφ(x)∂µφ(x). The Lagrangian density

is written with circular brackets instead of square brackets because it is not a functional, since

it inputs two numbers (the values of the field and its derivative at the same spacetime point)

and outputs a number. Considered over all spacetime it gives a function of space and time

that can be integrated. We could generalize the Lagrangian density to depend on even higher

derivatives, e.g. ∂µ∂νφ(x), but we will not do so.

We want to vary the functional S with respect to the field φ. This means we want to make

a change to our field φ(x)→ φ(α, x), where α is a deformation parameter with φ(0, x) = φ(x).

For example we can change the field as φ(x) → φ(α, x) = eαφ(x). The linear change in the

function is given by Taylor’s theorem as α∂φ(α, x)/∂α|α=0. This is defined as αδφ,

δφ ≡ ∂φ(α, x)

∂α

∣∣∣
α=0

. (A.4)

The action, Lagrangian, and Lagrangian density can all be thought of as functions of this

new parameter α, and therefore all have linear changes defined in the same way,

δS ≡ ∂S[φ(α)]

∂α

∣∣∣
α=0

, δL ≡ ∂L[φ(α, t), φ̇(α, t)]

∂α

∣∣∣
α=0

, δL ≡ ∂L(φ(α, x), ∂µφ(α, x))

∂α

∣∣∣
α=0
.(A.5)

For functionals of multiple fields, we could also define a variation like ∆L = ∂L[φ(α,t),φ̇(t)]
∂α |α=0,

which varies φ but not φ̇. The notation δL will almost always refer to the case where the

variation is done on both fields in the same way, as it descends from a variation of the full

spacetime field φ in the action.

Varying the field φ over all of spacetime tells us how its derivative ∂µφ varies,

δ(∂µφ) =
∂(∂µφ(α, x))

∂α

∣∣∣
α=0

(A.6)

Notice that by this definition of δφ we immediately have the identity

δ(∂µφ) =

[
∂(∂µφ(α, x))

∂α

]
α=0

=

[
∂µ
∂φ(α, x)

∂α

]
α=0

= ∂µ

[
∂φ(α, x)

∂α

]
α=0

= ∂µ(δφ) (A.7)

119



In the first equality we used commutativity of partial derivatives, in the second equality we

used the fact that φ(α, x) admits a Taylor expansion in α, and in the final equality we used

the definition of δφ.

Now let’s impose stationarity of the action, δS = 0, and see what it implies about the

Lagrangian density L:

δS =

[
∂

∂α

∫
d4xL(φ(α, x), ∂µφ(α, x))

]
α=0

=

[∫
d4x

(
∂L
∂φ

∂φ

∂α
+

∂L
∂(∂µφ)

∂(∂µφ)

∂α

)]
α=0

(A.8)

=

[∫
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
∂φ

∂α

]
α=0

=

∫
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ = 0 , (A.9)

where we freely moved the derivative ∂/∂α past the integral and used the chain rule in the

third expression, in the fourth expression we commuted the α and µ derivatives past each

other and then integrated by parts (dropping boundary terms since we assume the variation

δφ goes to zero at the boundaries), and in the fifth expression we used the definition of δφ.

To reduce clutter we have dropped the arguments of L, but notice in the fourth expression

we are evaluating the derivatives at φ(α, x) whereas in the fifth expression we are evaluating

them at φ(x) ..= φ(α = 0, x).

The vanishing of the above expression for arbitrary δφ gives us the Euler-Lagrange equa-

tions

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
. (A.10)

In the main text of these notes, we will often mix notation and write L(φ, ∂µφ) instead of

what should more appropriately be written as L(φ(x), ∂µφ(x)). But the latter would lead to

too much clutter. The fact that we use round brackets is what should remind you that it

is a function of φ(x) and ∂µφ(x), and not a functional of φ and ∂µφ (which as we already

discussed would be a redundant dependence on ∂µφ for a functional).

A.1 The functional derivative

The functional derivative is a derivative of a functional with respect to a function, the notation

for which is δS/δφ(x). One way to define it is by the first order changes given above,∫
ddx

δS

δφ(x)
δφ(x) ..=

∂S[φ(α)]

∂α

∣∣∣
α=0

(A.11)
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In particular this tells us

δS[φ] =

∫
ddx

δS

δφ(x)
δφ(x) . (A.12)

If we imagine discretizing spacetime into a lattice of points xi with i = 1, . . . , n, then S is an

ordinary function of n variables φ(xi)→ xi and this is just the chain rule

dS =

n∑
i=1

∂S

∂xi
dxi . (A.13)

We haven’t yet explained how to take functional derivatives in practice, but they work

basically like partial derivatives, except with the discrete → continuous replacement

∂xi
∂xj

= δij −→
δφ(x)

δφ(y)
= δd(x− y) . (A.14)

Notice that both of these very standard way of writing derivatives misuse our notation. We

are supposed to differentiate functions and functionally differentiate functionals. So xi is not

something one should partially differentiate. The proper way to write it is a bit ridiculous:

we define a function f i : Rd → R by f i(x) = xi and we differentiate ∂f i/∂xj . Similarly, we

should really write Fx[φ] = φ(x) (this functional eats the full function φ and evaluates it at

x, it can be defined explicitly by Fx[φ] =
∫
ddy φ(y)δd(x− y)) and functionally differentiate

Fx. We will instead use the efficient notation of (A.14).

The identity δφ(x)/δφ(y) = δd(x − y) can be derived by ensuring (A.12) is consistent

when choosing S[φ] =
∫
ddxφ(x). For another way see the example below.

Another (equivalent) way to define functional derivatives is similar to how partial deriva-

tives are defined. Say we have a function f : Rn → R. We can take the partial derivative in

the i’th direction as

∂f

∂xi
..= lim

ε→0

f(x1, . . . , xi + ε, . . . , xn)− f(x1, . . . , xn)

ε
(A.15)

We can pick a basis for the domain {δj}, j = 1, . . . , n, defined by (δj)
i = δij . Then we can

write this as

∂f

∂xi
= lim

ε→0

f(x + ε δi)− f(x)

ε
(A.16)

To move to a derivative of a functional, we now we imagine taking this discrete set of n points

to a continuous infinity of points. As before that means our set of variables {xj} goes to a
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function of a continuous variable φ(x). The i’th direction becomes a particular spacetime

point y. And our function f becomes a functional we will call S. The functional derivative

is defined as

δS[φ]

δφ(y)
..= lim

ε→0

S[φ+ εδy]− S[φ]

ε
(A.17)

We have defined a function δy : Rd → R, which is a Dirac delta function peak at y. This

is not δ(y): instead, it inputs a point in spacetime, say x, and outputs δ(y − x). This is

the continuum version of δi, which takes in a discrete index j and spits out the Kronecker

delta δii = j. So S[φ + εδy] is defined such that you feed the functional S the field φ at all

spacetime points x 6= y, and for x = y you feed it φ(y) + δ(0).

Example 1: Let’s derive δφ(x0)/δφ(y) = δd(x0−y) via (A.17). As we discussed below (A.14)

this is imprecise notation, since φ(x0) is not a functional. But we can associate a functional

Φx0 to functions evaluated at a point x0. It inputs a function and outputs the value of that

function at x0. A precise formula is Φx0 =
∫
ddxφ(x)δ(x− x0). We have

δΦx0

δφ(y)
= lim

ε→0

Φx0 [φ+ εδy]− Φx0 [φ]

ε
= lim

ε→0

φ(x0) + εδd(x0 − y)− φ(x0)

ε
= δd(x0 − y) .(A.18)

Example 2: Let’s repeat the exercise of imposing stationarity of the action, δS = 0, but now

study its implication for the Lagrangian instead of the Lagrangian density. We need a slight

generalization of (A.12), since our functional now has two arguments instead of one. The

generalization is

∂L[φ(α, t), φ̇(α, t)]

∂α

∣∣∣
α=0

=

∫
ddx

(
δL

δφ(x)
δφ(x) +

δL

δ(∂µφ(x))
δ(∂µφ(x))

)
(A.19)

This is just the chain rule. With the rest of our definitions we now have[
∂

∂α

∫
dtL[φ(α, t), φ̇(α, t)]

]
α=0

=

[∫
dt

(
δL

δφ

∂φ

∂α
+
δL

δφ̇

∂φ̇

∂α

)]
α=0

(A.20)

=

[∫
dt

(
δL

δφ
− d

dt

δL

δφ̇

)
∂φ

∂α

]
α=0

=

∫
dt

(
δL

δφ
− d

dt

δL

δφ̇

)
δφ = 0 , (A.21)
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using the same tricks as before. For arbitrary variation δφ this therefore tells us

δL

δφ
=

d

dt

δL

δφ̇
(A.22)

B Fourier transforms

The Fourier transform is defined as

f(x) =

∫
d3k

(2π)3
eik·xf̃(k) , (B.1)

with the inverse transform

f̃(k) =

∫
d3x e−ik·xf(x) . (B.2)

We will often just call both the Fourier transform, and put the tilde on whichever is conve-

nient.

The Fourier transform of 1 is a delta function,

δ3(x) =

∫
d3k

(2π)3
eik·x1 , 1 =

∫
d3x e−ik·xδ3(x) . (B.3)

This is necessary for the inverse transform to be an inverse:

f̃(k) =

∫
d3x e−ik·x

∫
d3k′

(2π)3
eik
′·xf̃(k′) =

∫
d3k′ δ3(k− k′)f̃(k′) = f̃(k) . (B.4)

The delta function Fourier transform is very useful, since it lets us write

∇2nδ3(x) =

∫
d3k

(2π)3
∇2neik·x =

∫
d3k

(2π)3
(−k2)neik·x (B.5)

where ∇2 = ∂i∂
i is the Laplacian operator and k2 = k · k = kik

i. So we have

∇̃2nδ3 = (−k2)n . (B.6)
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For relativistic theories, we have

f(x) =

∫
d4k

(2π)4
eikµx

µ
f̃(k) , f̃(k) =

∫
d4x e−ikµx

µ
f(x) . (B.7)

So for example

δ4(x) =

∫
d4k

(2π)4
eikµx

µ
, (B.8)

�nδ4(x) =

∫
d4k

(2π)4
�neikµx

µ
=

∫
d4k

(2π)4
(−k2)neikµxµ . (B.9)

where � = ∂µ∂
µ = −∂2t + ∂2x + ∂2y + ∂2z . More generally this gives

�nf(x) =

∫
d4k

(2π)4
�nf̃(k)eikµx

µ
=

∫
d4k

(2π)4
(−k2)nf̃(k)eikµx

µ
(B.10)

The shorthand relations

∇2 ↔ −k2 , �↔ −k2 (B.11)

will come in very handy.

C Green’s functions

Say we want to solve an inhomogeneous ordinary differential equation like

y′′(t) + ω2y(t) = f(t) (C.1)

with source f(t). This equation describes a driven harmonic oscillator, with driving force

(divided by mass) given by f(t). To solve (C.1) we instead first solve for the Green’s

function, defined by

d2

dt2
G(t, t′) + ω2G(t, t′) = δ(t′ − t) . (C.2)
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So the Green’s function solves the same differential equation except the source term is chosen

to be a delta function. With this solution in hand, we can construct a solution to (C.1):

yp(t) =

∫ ∞
−∞

G(t, t′)f(t′)dt′ . (C.3)

The subscript p is to denote that this is a “particular” solution to the inhomogeneous differen-

tial equation. It is “particular” because it has no arbitrary constants (two are needed to fully

fix this second order equation). To check that it is a solution simply plug into (C.1). This

Green’s function technique be generalized to equations of the form y′′+p(t)y′+ q(t)y = f(t).

A solution to (C.1) is also given by

y(t) =

∫ b

a
G(t, t′)f(t′)dt′ (C.4)

as long as t ∈ (a, b). What we have done is invert the differential operator d2/dt2 +ω2, which

gives us an integral operator with the kernel of the integral being the Green’s function. Notice

that to invert a differential operator there must be no vanishing eigenvalues (just like with

inverting a matrix) – we assumed this to be the case above, and whether it is actually true

in an example depends very much on the chosen boundary conditions.

Notice that we can always add yh(t), which solves the homogeneous equation y′′(t) +

ω2y(t) = 0, to our constructed solution (C.3), obtaining

y(t) = yh(t) + yp(t) . (C.5)

This will continue to solve (C.1).

What about boundary conditions? This is related to the freedom in arbitrary constants.

Let’s consider the physical situation where the source f(t) vanishes for t ≤ t0, and we turn

it on for all t > t0. In this case we expect y(t0) = yh(t0) for t ≤ t0. Let’s say our boundary

conditions are y(t0) = y0, y
′(t0) = v0. We will put these boundary conditions into yh(t), so

we have

y(t0) = yh(t0) + yp(t0) = y0 + 0 , y′(t0) = y′h(t0) + y′p(t0) = v0 + 0 , (C.6)

i.e. yp(t0) = y′p(t0) = 0. G(t, t′) inherits this boundary condition as G(t, t′) = ∂tG(t, t′) = 0

for t ≤ t0. So altogether we have

y′′(t) + ω2y(t) = f(t) , y(t0) = y0 , y′(t0) = v0 (C.7)
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solved by

y(t) = yh(t) +

∫ ∞
−∞

G(t, t′)f(t′)dt′ = yh(t) +

∫ ∞
t0

G(t, t′)f(t′)dt′, (C.8)

G(t, t′)|t≤t0 = ∂tG(t, t′)|t≤t0 = 0 , y′′h(t) + ω2yh(t) = 0 , yh(t0) = y0, y
′
h(t0) = v0 . (C.9)

We can check again by plugging in that this solves the differential equation and boundary

conditions (C.7). But if we are thinking of physical time evolution, this is a little strange. To

get y(t) at time t, we need to do an integral over all times to the future of t, since t′ ∈ (t0,∞)!

Does the function y(t) actually depend on what happens to the future of the time we care

about?!

To see that it doesn’t, we should actually solve for G(t, t′). To find the solution, Laplace

transform both sides of (C.1) to get

(p2 + ω2)G(p, t′) = e−pt
′

=⇒ G(p, t′) =
e−pt

′

p2 + ω2
. (C.10)

Performing the inverse Laplace transform gives (recall we are considering t > t0)

G(t, t′) =


sinω(t−t′)

ω , t′ < t

0 , t < t′ .
(C.11)

The Green’s function vanishes for t′ > t, so times to the future of the time we care about

do not influence y(t)! Such a Green’s function is known as a “retarded” Green’s function

GR(t, t′) and satisfies GR(t, t′ > t) = 0. This was assured by the boundary conditions

G(t, t′)|t≤t0 = ∂tG(t, t′)|t≤t0 = 0. So this is the relevant object when we have some initial

field configuration (and its derivative) and want to propgate it into the future.

We can also define an “advanced” Green functionGA(t, t′) which instead satisfiesGA(t, t′ <

t) = 0. An advanced Green function describes propagation into the past. It is useful if you

know some final field configuration (and its derivative) and wanted to figure out where it

came from. So we would have automatically produced an advanced Green function if we

fixed boundary conditions y(t0) = y0, y
′(t0) = v0 and asked for y(t) for t < t0.

Notice that the retarded and advanced Green’s functions are not symmetric in t, t′.

Physically this makes sense, but mathematically it may seem surprising since if our differential

operator L is self-adjoint then it should assure that the Green’s function is symmetric in its

arguments (this is the reciprocity theorem or symmetry theorem; see e.g. here or Sturm-

Liouville theory for more). But whether the operator is self-adjoint depends on the boundary
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conditions. Self-adjoint is in reference to the inner product

〈v|u〉 =

∫ b

a
v?(t)u(t)dt , (C.12)

for functions u, v ∈ L2([a, b]), i.e. square-integrable functions over [a, b]. So we have

〈v, L[u]〉 − 〈L[v], u〉 =

∫ b

a

(
v?(u′′ + ω2u)− ((v?)′′ + ω2v?)u

)
dt (C.13)

=
[
v?u′ − (v?)′u

]b
a

(C.14)

This needs to vanish for arbitrary v, u for L to be self-adjoint. Notice that boundary

conditions that set the function and its derivative to vanish at a (in the retarded case) or

b (in the advanced case) do not lead to the above vanishing, i.e. L is not a self-adjoint

operator with those boundary conditions. Notice instead that general Robin conditions

αf(b) + βf ′(b) = 0 and γf(a) + ηf ′(a) = 0 makes L self-adjoint. This includes, for example,

Dirichlet boundary conditions at the two endpoints f(a) = f(b) = 0, or Neumann boundary

conditions at the two endpoints f ′(a) = f ′(b) = 0.

Returning to our solution above, we note that it is sometimes also written as

y(t) = yh(t) +

∫ t

t0

GR(t, t′)f(t′)dt′ , (C.15)

although this makes it less clear that (C.1) is satisfied.

Example 1: We would like to investigate the dependence on boundary conditions of the in-

vertibility of differential operators. As a simple example that will be relevant for QFT,

consider the equation (
d2

dt2
+ ω2

)
y(t) = f(t). (C.16)

To implement the Green’s function method we want to solve(
d2

dt2
+ ω2

)
G(t, t′) = δ(t− t′) (C.17)

by inverting the differential operator. This requires that it has no vanishing eigenvalues.

Let’s check this for some simple setups. In situations where we turn on the force f(t) from,

say t = 0 to t = 1, and we want to propagate the solution at t = 0 forward in time, then we
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saw that we want to solve (C.16) for yp(t) with boundary conditions yp(0) = y′p(0) = 0. This

will give the retarded propagator. So we want to see if there are any nontrivial yp satisfying

these boundary conditions and (
d2

dt2
+ ω2

)
yp(t) = 0 . (C.18)

We know what the general solution to this equation is: yp(t) = Aeiωt + Be−iωt (in the case

of y ∈ R we would have B = A?). Implementing the boundary conditions gives

yp(0) = 0 =⇒ A = −B , y′p(0) = 0 =⇒ A = B . (C.19)

This means yp(t) = 0, i.e. there is no nontrivial solution with vanishing eigenvalue. So the

retarded propagator can be constructed by inverting this differential operator. The advanced

propagator works similarly: placing boundary conditions yp(1) = y′p(1) = 0 also leads to a

vanishing function yp(t) = 0. The Feynman propagator has more interesting boundary

conditions. If we define

y+(t) = Aeiωt , y−(t) = Be−iωt (C.20)

then we can write y(t) = y+(t)+y−(t). The Feynman boundary conditions place the retarded

boundary conditions on y+ (which, in the quantum-mechanical context, are the Fourier modes

that come with the creation operator a†) and the advanced boundary conditions on y− (which

are the Fourier modes that come with the annihilation operator a). In other words, we have

y+(0) = y′+(0) = 0 , y−(1) = y′−(1) = 0 . (C.21)

But notice immediately that y+(0) = 0 =⇒ A = 0 and y−(1) = 0 =⇒ B = 0. So there are

again no vanishing eigenvalues.

We can use the Green’s function method for partial differential equations as well. The

case of Poisson’s equation

∇2V = 4πρ(r) = 4πρ(x, y, z) (C.22)

gives a nice physical picture of the method. This is the equation governing the electric (or

gravitational) potential V , determined in terms of the charge (or mass) density ρ. We instead
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study the Green’s function equation

∇2
rG(r, r′) = δ(r− r′) ..= δ(x− x′)δ(y − y′)δ(z − z′) , (C.23)

where the subscript is to remind us that the Laplacian acts on the first argument of the

Green’s function. We have replaced our continuous density with a point charge or point

mass. To solve this equation, let’s pick r′ = 0 for simplicity, reintroducing it by a translation

at the end. The equation we want to solve is

1

r2
d

dr

(
r2
d

dr
G(r)

)
= δ(r) . (C.24)

We integrate both sides over a sphere of arbitrary radius R to get∫ R

0

∫ π

0

∫ 2π

0
dr dθ dφ

d

dr

(
r2
d

dr
G(r)

)
= 4πR2G′(R) = 1 , (C.25)

where we used the divergence theorem. Since the sphere radius is arbitrary, we have

G′(r) =
1

4πr2
=⇒ G(r) = − 1

4πr
(C.26)

Notice this solution is also consistent with r 6= 0, since in that case 1
r2

d
dr (r2G′(r)) = 0.25 The

general solution is therefore

G(r, r′) = − 1

4π|r− r′|
. (C.27)

The solution to Poisson’s equation is then given by

V (r) =

∫ ∫ ∫
G(r, r′)4πρ(r′)dV ′ = −

∫ ∫ ∫
ρ(r′)

|r− r′|
dV ′ . (C.28)

So the potential is obtained by integrating up the density. This makes sense: we are just

approximating a continuous density by a bunch of point charges, and adding up the answers.

That is the Green’s function method.

The relativistic generalization of this is straightforward. We want to solve the equation

�f = (−∂2t + ∂2x + ∂2y + ∂2z )f = ρ . (C.29)

25A simple way to get the scaling of G(r) is by considering r 6= 0; to fix the coefficient we have to integrate
over the delta function to pick up its strength.
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The solution of this is sometimes written formally as

f =
1

�
ρ (C.30)

where 1
� = �−1 is the inverse of the box operator. The inverse of a differential operator is an

integral operator, and the kernel of the integral operator is the Green’s function, as we just

saw.26 The reason we write 1
�ρ and not ρ

� is to remember that �−1 is an integral operator

which will act on ρ. This notation looks crazy but it’s meant to simplify computations. For

example, let’s say we wanted to solve the following differential equation

�φ+ λφ2 + J = 0 (C.31)

perturbatively in the coefficient λ. This equation of motion follows from the Lagrangian

L = −1

2
∂µφ∂

µφ+
1

3
λφ3 + Jφ . (C.32)

The first term is the kinetic term, the second term is an interaction term which makes the

EOM nonlinear, and the third term is a “source” term which we will discuss more in the

main text.

We first solve for the background configuration φ0, i.e. the one with λ = 0:

�φ0 = −J =⇒ φ0 = − 1

�
J . (C.33)

We then look for the first correction φ1, which we parameterize to be O(λ0):

φ = φ0 + λφ1 +O(λ2) =⇒ �(φ0 + λφ1) + λ(φ0 + λφ1)
2 + J +O(λ2) = 0 . (C.34)

Using (C.33) gives

�φ1 + φ20 +O(λ2) = 0 . (C.35)

Since we required φ1 ∼ O(λ0), we have

φ1 = − 1

�
φ20 = − 1

�

[(
1

�
J

)(
1

�
J

)]
. (C.36)

26Very confusingly, sometimes �−1 is called the Green’s function, since �G(x, y) = −δ4(x− y), see below.
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So the solution to order λ is given by

φ = φ0 + λφ1 = − 1

�
J − λ 1

�

[(
1

�
J

)(
1

�
J

)]
+O(λ2) . (C.37)

One can continue solving the equation to higher orders in this way. The fundamental object

is the Green’s function G(x, y), alternatively called the propagator or 2-point function, which

serves as the kernel for the integral operator −�−1. It is determined entirely by the quadratic

terms in the Lagrangian, which in this case is just the kinetic term. It is called a propagator

because it gives you the dynamics of how the field propagates once the interactions and

source J are specified. Let’s write (C.37) a little more explicitly.

The Green’s function satisfies

�xG(x, y) = −δ4(x− y) , (C.38)

where the minus sign on the RHS is due to the minus sign in (C.33), so this is the same

convention as in (C.2). We solve this in Fourier space, i.e. we Fourier transform both sides

with respect to x, using (B.10) to get the equation∫
d4k

(2π)4
(−k2)G̃(k, y)eikx = −

∫
d4k

(2π)4
eik(x−y) (C.39)

which has as solution

G̃(k, y) =
1

k2
e−iky =⇒ G(x, y) =

∫
d4k

(2π)4
1

k2
eik(x−y) = G(x− y) . (C.40)

The Green’s function only depends on the relativistic separation x−y ..=
√

(xµ − yµ)(xµ − yµ),

so we write G(x− y). One can check by direct calculation that this satisfies (C.38).

We use the Green’s function to construct the zeroeth order solution27 φ0 = − 1
�J

φ0 =

∫
d4y G(x− y)J(y) . (C.44)

27It is simplest to check this claimed solution by acting with � on both sides. But if you want to construct
it more explicitly, write

�φ0(x) = −J(x) =⇒ −
∫
d4xG(x− y)�φ0(x) =

∫
d4xG(x− y)J(x) (C.41)

=⇒ −
∫
d4x (�G(x− y))φ0(x) =

∫
d4xG(x− y)J(x) =⇒

∫
d4x δ4(x− y)φ0(x) =

∫
d4xG(x− y)J(x)(C.42)

=⇒ (C.44) (C.43)
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To go to the next order we need to use (C.35):

�φ1(y) = −φ20(y) = −
∫
d4wG(y − w)J(w)

∫
d4z G(y − z)J(z) . (C.45)

We can identify −φ20(y) = −J(y) as a source so that we can use again the Green’s function

solution φ1 =
∫
d4yG(x − y)J(y) =

∫
d4yG(x − y)φ20(y). We combine this with φ0 to write

φ(x) = φ0(x) + λφ1(x) +O(λ2) as

φ(x) =

∫
d4y G(x− y)J(y)

+ λ

∫
d4y G(x− y)

∫
d4wG(y − w)J(w)

∫
d4z G(y − z)J(z) +O(λ2) . (C.46)

We can think of the sources J as insertions, which are then propagated some distance via

G(x− y). In the first line we simply have an insertion J(y) which is propated via G(x− y)

to x. The point y needs to be integrated over all spacetime. In the second line we have two

insertions, J(w) and J(z), and they are both propagated and meet at the point y, which is

then propagated to the point x. There are integrals over w and z so these insertions have

to be integrated over all spacetime. The point y is also integrated over all spacetime but

there is no insertion there, it is an “interaction vertex” which comes with a cost of λ. This is

how this diagram represents the O(λ) correction to the field value φ(x). One can pictorially

represent this solution with the Feynman diagrams below.

The Lagrangian we have written down in fact describes gravitational interactions, with φ

corresponding to (a piece of) the graviton. As discussed in [4], this expansion lets us discuss

the way the sun affects the Earth. The source is the sun, and the source function J will

only have support on the location of the sun (i.e. the integrals over spacetime will only have

contributions from the part of space where the sun is). The leading term φ0 represents the

Newtonian potential, since that results in Poisson’s equation, which is linear. The nonlinear
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corrections come from Einstein’s theory. The first one is represented by φ1. But further

corrections can be drawn, according to the pictorial rules of Feynman diagrams. To compute

to O(λn), we follow the steps:

� Draw a point x and a line from x to a new point xi.

� Either truncate the line at xi with a source J , or draw two lines coming out of xi, at

a cost of one factor of λ. If you draw two lines, they need to truncate at sources or

branch further. Repeat this until you have paid m costs of λ, with m ≤ n.

� Repeat this for all integer 0 ≤ m ≤ n.

� The final value of φ(x) is given by summing all the graphs constructed above. The

picture is translated to equations by replacing lines between xi and xj with propagators

G(xi − xj) and integrating over all xi (but not x).

Notice that according to these rules the number of factors of λ in a diagram will always be

one less than the number of factors of J .

Different classical theories have a similar Feynman diagrammatic expansion, with the

primary difference being the possibility of different species of particles and higher-order

interactions, which correspond to more lines coming out of each branching point. Quantum

theories have a very similar diagrammatic expansion, except we allow the possibility for lines

to close in on themselves.

D Gaussian integrals

D.1 One-dimensional integrals

Let’s calculate

I =

∫ ∞
−∞

dp e−
1
2
ap2+Jp . (D.1)

We want to get rid of the linear-in-p piece. This is done by “completing the square”

I =

∫ ∞
−∞

dp e−
1
2
a(p−Ja )

2
+J2

2a (D.2)

and then shifting p→ p+ J/a, which does not change the integration measure:

I = e
J2

2a

∫ ∞
−∞

dp e−
1
2
ap2

=
1√
a
e
J2

2a

∫ ∞
−∞

dp e−
1
2
p2

(D.3)
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We can evaluate this integral by using a trick:(∫ ∞
−∞

dp e−
1
2
p2

)2

=

∫
dx

∫
dy e−

1
2
x2
e−

1
2
y2

=

∫ ∞
0

r dr

∫ 2π

0
dφ e−

1
2
r2

(D.4)

= 2π

∫ ∞
0

u du

2
e−

1
2
u = 2π . (D.5)

So we find the following formula:

∫ ∞
−∞

dp e−
1
2
ap2+Jp =

√
2π

a
e
J2

2a . (D.6)

Stationary phase/saddle point/steepest descent

In the limit ~→ 0, integrals like∫
dp e−f(p)/~ , or

∫
dp eif(p)/~ (D.7)

tend to be dominated by the value of p for which f(p) is an extremum. This is easy to see in

the former integral, where we have humongous exponential suppressions which we can fight

by minimizing f(p). But the latter integral is similar: as ~→ 0 the phase is cycling around

more and more quickly, i.e. a full cycle of the phase requires a smaller and smaller range

of p as ~ → 0. These cycles integrate to zero, and the only way to stop the cycling is to

make f(p) not change as p changes; this is just an extremum. The location of the extrema

are called “saddle points.” As an example, we plot below the real and imaginary parts of

ei sin t/~ for ~ = 1, .1, .01 from left to right. Notice that by ~ = .01 we have a scribbly mess

which is going to cancel against itself except around π/2, which is the extremum of sin t in

the plotted range t ∈ (0, π).
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Up to the prefactor, we could have obtained formula (D.6) by applying the saddle point

method, even though there isn’t a manifest small ~. The saddle point p? of the integrand of
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(D.1) is given by

d

dp

(
−1

2
ap2 + Jp

) ∣∣∣∣∣
p?

= 0 =⇒ −ap? + J = 0 =⇒ p? = J/a . (D.8)

The integral is then approximated by

I ≈ e(−
1
2
ap2+Jp)|p? = e

J2

2a . (D.9)

This is a good approximation when J2/a is large. To obtain the prefactor we would have

to do a Gaussian integral (without source J). This is done by expanding p = p? + δp and

working to quadratic order in δp. We won’t go through the details since we will often be

uninterested in these prefactors.

D.2 Multi-dimensional integrals

The above has a simple generalization to multi-dimensional Gaussian integrals, where we

integrate over a vector pi of variables:

I =

∫ ∞
−∞

dnp e−
1
2
Aijp

ipj+Jip
i

=

∫ ∞
−∞

dnp e−
1
2
pTAp+JT p (D.10)

where A is a symmetric positive-definite matrix (which we can assume since pipj is symmetric

and so any antisymmetric piece of A vanishes in Aijp
ipj). We first eliminate the source term

by completing the square:

I =

∫ ∞
−∞

dnp e−
1
2
Aij(pi−(A−1)ikJk)(pj−(A−1)jmJm)+ 1

2
JjJm(A−1)mj (D.11)

=

∫ ∞
−∞

dnp e−
1
2
(p−A−1J)TA(p−A−1J)+ 1

2
JTA−1J . (D.12)

Performing the shift p→ p+A−1J gives

I = e
1
2
JTA−1J

∫ ∞
−∞

dnp e−
1
2
pTAp . (D.13)

We can write A = QTDQ for an orthogonal matrix Q and diagonal matrix D. We can

induce this by the coordinate change p → Qp. Since |det[Q]| = 1, the Jacobian from the

change-of-variables is trivial and we can evaluate the above with A → D. This integral is
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simply n copies of (D.6), which gives

∫ ∞
−∞

dnp e−
1
2
pTAp+JT p =

√
(2π)n

detA
e

1
2
JTA−1J . (D.14)

We again could have gotten this result by a saddle-point analysis

d

dpk

(
−1

2
Aijp

ipj + Jip
i

) ∣∣∣∣∣
pk?

= 0 =⇒ −1

2
Akjp

j
? −

1

2
Aikp

i
? + Jk = 0 =⇒ Akip

i
? = Jk .(D.15)

Multiplying by the inverse matrix (A−1)jk on both sides gives

pj? = (A−1)jkJk =⇒ p? = A−1J . (D.16)

Plugging this into (D.10) gives

I ≈ e−
1
2
pTAp+JT p|p? = e

1
2
JTA−1J . (D.17)

E Symmetries and representations in quantum mechanics

The precise definition of a symmetry has been updated over the years. Heuristically, it is a

change of perspective (e.g. the transformation of fields as we saw in the proof of Noether’s

theorem) that does not change the results of experiments. In the context of classical field

theory we saw an example of this: Noether’s theorem. The transformation of the fields was

the change in perspective. The results of experiments remain unchanged in that context since

the action – and therefore the equations of motion – was invariant under the transformation

of the fields.

In quantum mechanics, we speak of vectors in Hilbert space. We will define a ray v to

be all vectors related to |v〉 by eiα|v〉 with α ∈ R, i.e. v = {eiα|v〉; α ∈ R}. The state of

a system is represented by a ray in Hilbert space v. A change in perspective can lead to

a different observer representing the state of the system by a different ray v′. However, if

this is a symmetry, the results of experiments should remain unchanged, for example the

probability to transition into some other state w should remain unchanged:

P (v → w) = P (v′ → w′) . (E.1)

Eugene Wigner proved that symmetry transformations which satisfy the above imply the

existence of an operator U such that if |v〉 ∈ v then U |w〉 ∈ w with U either (a) unitary and
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linear:

〈Uv|Uw〉 = 〈v|w〉 , U (a|v〉+ b|w〉) = aU |v〉+ bU |w〉 (E.2)

or (b) antiunitary and antilinear:

〈Uv|Uw〉 = 〈v|w〉? , U (a|v〉+ b|w〉) = a?U |v〉+ b?U |w〉 (E.3)

Notice that unitary operators have to be linear and antiunitary operators have to be antilin-

ear, you cannot have an e.g. antiunitary and linear operator.

The adjoint of a linear operator L is defined as

〈v|L†w〉 ..= 〈Lv|w〉 (E.4)

This does not work for an antilinear operator, since taking a sum of vectors v → v1 + v2

would lead to the LHS being linear in v while the RHS is antilinear in v. So for an antinlinear

operator we instead define the adjoint as

〈v|A†w〉 ..= 〈Lv|w〉? = 〈w|Lv〉 . (E.5)

These definitions together mean that

U † = U−1 (E.6)

for both unitary and antiunitary operators.

Antiunitary operators are exotic and will not be considered in this class, they often involve

reversing the orientation of time. Continuous symmetries, like the one considered in (4.16),

have a real parameter that can be continuously varied to make the symmetry transformation

trivial. Such a trivial transformation is represented by the identity operator U = 1, which is

linear and unitary. By continuity, then, the more general symmetry transformation will also

be linear and unitary. This is a heuristic reason why most transformations considered, like

rotations or Lorentz boosts, are linear and unitary.

We can fruitfully expand such linear and unitary operators close to the identity operator:

U = 1 + iεt (E.7)

with ε real and infinitesimal. Since U is unitary, this means t is real and Hermitian.

The set of symmetry transformations forms a group. We consider the transformation on
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rays:

T1 : v → v′ , T2 : v′ → v′′ =⇒ T2T1 : v → v′′ (E.8)

We also have inverse transformations T−1 and the identity transformation T = 1.

We now want to understand the (anti)unitary operators U(T ) corrresponding to these

symmetry transformations T . There is an annoying complication in quantum mechanics

which is the reason we distinguished between vectors and rays. That complication is the fact

that the (anti)unitary operators U(T ) act on vectors in the Hilbert space, whereas T above

was acting on rays. Since T1 : v → v′, we want that U(T1)|v〉 ∈ v′ for |v〉 ∈ v. Similarly,

U(T2)|v′〉 ∈ v′′. This means that

U(T2)U(T1)|v〉 = eiφ(T2,T1)U(T2T1)|v〉 (E.9)

i.e. both vectors live in the same ray, and the phase distinguishing the states can depent on

the symmetry transformations T1, T2. Ignoring the possibility of superselection sectors, the

phase φ is independent of the state |v〉. (For the proof see pg. 52 - 53 of [2]) This means

that we can write

U(T2)U(T1) = eiφ(T2,T1)U(T2T1) (E.10)

When φ = 0 this is called a representation of the group of symmetry transformations given

by T . For nonzero φ this is instead called a projective representation, which is just a repre-

sentation that allows for a phase factor as written above.

F Lorentz transformations

F.1 Lorentz group and subgroups

One of the most important symmetries we will be concerned with is Lorentz invariance. This

is the symmetry of special relativity, and it connects the physics between inertial frames of

reference. For xµ the coordinates in one inertial frame, and x′µ the coordinates in another

inertial frame, we must have the relation

ηµνdx
′µdx′ν = ηµνdx

µdxν , (F.1)
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which can also be written as

ηµν
∂x′µ

∂xρ
∂x′ν

∂xσ
= ηρσ . (F.2)

This means that the interval −∆t2 + ∆x2 + ∆y2 + ∆z2 is preserved between points in

spacetime.

The general transformation between coordinates xµ and x′µ obeying (F.1) can be written

as

x′µ = Λµνx
ν + aµ , (F.3)

where aµ are arbitrary constants and Λµν is a matrix of constants satisfying

ηµνΛµρΛ
ν
σ = ηρσ . (F.4)

The set of Lorentz transformations forms a group: the product of two Lorentz transformations

is another Lorentz transformation (check this!), there is an identity transformation given by

Λµν = δµν which corresponds to no change in frame, and each transformation has an inverse.

To construct the inverse, we write (F.4) as

Λ ρ
ν Λνσ = δρσ (F.5)

The matrix inverse is defined as

(Λ−1)ρνΛνσ = δρσ , (F.6)

which lets us read off

(Λ−1)ρν = Λ ρ
ν . (F.7)

We can now classify various subgroups of Lorentz transformations. The full set of transfor-

mations is known as the inhomogeneous Lorentz group or Poincaré group. If we set

aµ = 0, then this is known as the homogeneous Lorentz group.

We can further classify the group of Lorentz transformations. (F.7) tells us that (Det Λ)−1 =

Det Λ and so

Det Λ = ±1 . (F.8)
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Transformations with Det Λ = +1 are called proper, while transformations with Det Λ = −1

are called improper. The homogeneous and inhomogeneous Lorentz groups have proper

subgroups, since Det Λ = +1 is a property that is preserved under successive Lorentz trans-

formations. (Conversely, there is no such thing as in improper subgroup.)

Finally, we have the orthochronous subgroup which consists of transformations with

Λ0
0 ≥ +1. Restrictions on the 0-0 component can be obtained from (F.4), which tells us

(Λ0
0)

2 − Λi 0Λ
i
0 = 1, so either Λ0

0 ≥ +1 or Λ0
0 ≤ −1.

Now for some examples. It will help to begin with continuous Lorentz transformations

which can be expanded about the identity. The identity transformation is (F.3) with Λµν =

δµν and aµ = 0. This means the symmetry transformations near the identity are (F.3) with

Λµν = δµν + ωµν , aµ = εµ , (F.9)

where ωµν and εµ are infinitesimal. Since the identity transformation is proper and or-

thochronous, by continuity any transformation that can be expanded about the identity is

proper and orthochronous. This includes the usual Lorentz boosts, spatial rotations, and

spacetime translations you are used to.

We also have the discrete transformations of parity and time reversal. The parity trans-

formation is

Pµν =


+1

−1

−1

−1

 (F.10)

while the time-reversal transformation is

Tµν =


−1

+1

+1

+1

 (F.11)

These are discrete so cannot be expanded around the identity. Parity is orthochronous but

improper, while time reversal is nonorthochronous and improper. They both square to the

identity.

In the full, inhomogeneous Lorentz group, any transformation is either proper and or-

thochronous, or can be written as a product of an element of the proper orthochronous

subgroup with one of the discrete transformations P , F , or PF . For this reason, people
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usually restrict attention to the proper orthochronous Lorentz transformations (the ones you

are probably used to!) and supplement them with P and F .

F.2 Representations on Hilbert space

Notice that (F.4) and (F.9) tells us that

ωµν = −ωνµ . (F.12)

This means that for an infinitesimal Lorentz transformation (F.9), we can write the unitary

operator which represents the transformation as

U(1 + ω, ε) = 1 +
i

2
ωµνM

µν − iεµPµ + . . . (F.13)

with Mµν = −Mνµ. The ellipses represent higher orders in the infinitesimals. Mµν and Pµ

are Hermitian operators independent of ε and ω. We will shortly see that Pµ is the momentum

four-vector operator and M23, M31, M12 are components of the angular momentum vector

operator.

We want to see how these operators transform under Lorentz transformations. We con-

sider the product

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) , (F.14)

where Λ and a are parameters of an arbitrary Lorentz transformation. Using (E.10) with the

phase set to zero (to do this we need to extend the Lorentz group to SL(2, C), see Chapter

2.7 of [2]), we have

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2) , (F.15)

which tells us

U(Λ−1,−Λ−1a)U(Λ, a) = U(1, 0) =⇒ U(Λ−1,−Λ−1a) = U(Λ, a)−1 . (F.16)

Therefore we can write our product (F.14) as

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) = U
(
Λ(1 + ω)Λ−1,Λε− ΛωΛ−1a

)
. (F.17)
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Expanding both sides to first order in ω and ε gives

U(Λ, a)

[
1

2
ωρσM

ρσ − ερP ρ
]
U−1(Λ, a) =

1

2
(ΛωΛ−1)µνM

µν − (Λε− ΛωΛ−1a)µP
µ . (F.18)

Equating the coefficients of ωρσ and ερ on both sides gives

U(Λ, a)MρσU−1(Λ, a) = Λ ρ
µ Λ σ

ν (Mµν − aµP ν + aνPµ) (F.19)

U(Λ, a) P ρ U−1(Λ, a) = Λ ρ
µ P

µ (F.20)

Notice that Pµ is translation-invariant while Mµν is not; this simply tells us that en-

ergy/momentum is independent of the origin, and for the components of Mµν corresponding

to angular momentum it is telling us that the angular momentum depends on the origin. The

homogeneous Lorentz transformations (i.e. with aµ = 0) are telling us that Jµν transforms

as a tensor and Pµ as a vector.

Picking Λ and a in (F.19) - (F.20) to be Λµν = δµν + ωµν and aµ = εµ (where ω and ε

need not have any relation to the ones considered previously), these equations become

i

[
1

2
ωµνM

µν − εµPµ,Mρσ

]
= ω ρ

µ M
µσ + ω σ

ν M
ρν − ερP σ + εσP ρ , (F.21)

i

[
1

2
ωµνM

µν − εµPµ, P ρ
]

= ω ρ
µ P

µ . (F.22)

Again equating the coefficients of ωµν and εµ on both sides gives us the Lie algebra of the

Poincaré group:

i[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ησµMρν + ησνMρµ , (F.23)

i[Pµ,Mρσ] = ηµρP σ − ηµσP ρ , (F.24)

[Pµ, P ρ] = 0 . (F.25)

Recall that in quantum mechanics operators which commute with the Hamiltonian H = P 0

are conserved in time. Our algebra above indicates that the momentum three-vector

P = {P 1, P 2, P 3} (F.26)
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and the angular momentum three-vector

J = {M23,M31,M12} (F.27)

all commute with H. And of course H commutes with H. The remaining generators form

the boost three-vector

K = {M01,M02,M03} (F.28)

and do not commute with H. So our Lie algebra can be written as

[Ji, Jj ] = iεijkJ
k , (F.29)

[Ji,Kj ] = iεijkK
k , (F.30)

[Ki,Kj ] = −iεijkJk , (F.31)

[Ji, Pj ] = iεijkPk , (F.32)

[Ki, Pj ] = −iHδij , (F.33)

[Ji, H] = [Pi, H] = [H,H] = 0 , (F.34)

[Ki, H] = −iPi . (F.35)

If we restrict to the homogeneous Lorentz group – which eliminates translations and therefore

Pµ – we have instead

[Ji, Jj ] = iεijkJ
k , [Ji,Kj ] = iεijkK

k , [Ki,Kj ] = −iεijkJk . (F.36)

This lets us define two decoupled three-vectors

J+
i =

1

2
(Ji + iKi) , J−i =

1

2
(Ji − iKi) (F.37)

which obey the angular momentum algebra

[J+
i , J

+
j ] = iεijkJ

+
k (F.38)

[J−i , J
−
i ] = iεijkJ

−
k (F.39)

[J+
i , J

−
j ] = 0 . (F.40)

This basis is useful since it allows us to leverage results from the study of angular momentum

in quantum mechanics. For example, finding representations of this algebra becomes the same
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problem as finding matrices representing the spins of two uncoupled particles.
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